Nonlinear Interactions in Nanolattices Described
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 183-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

The oscillatory motion in nonlinear nanolattices having different interatomic potential energy functions is investigated. Potential energies such as the classical Morse, Biswas – Hamann and modified Lennard – Jones potentials are considered as interaction potentials between atoms in one-dimensional nanolattices. Noteworthy phenomena are obtained with a nonlinear chain, for each of the potential functions considered. The generalized governing system of equations for the interaction potentials are formulated using the well-known Euler – Lagrange equation with Rayleigh’s modification. Linearized damping terms are introduced into the nonlinear chain. The nanochain has statistical attachments of 40 atoms, which are perturbed to analyze the resulting nonlinearities in the nanolattices. The range of initial points for the initial value problem (presented as second-order ordinary differential equations) largely varies, depending on the interaction potential. The nanolattices are broken at some initial point(s), with one atom falling off the slender chain or more than one atom falling off. The broken nanochain is characterized by an amplitude of vibration growing to infinity. In general, it is observed that the nonlinear effects in the interaction potentials cause growing amplitudes of vibration, accompanied by disruptions of the nanolattice or by the translation of chaotic motion into regular motion (after the introduction of linear damping). This study provides a computationally efficient approach for understanding atomic interactions in long nanostructural components from a theoretical perspective.
Keywords: nonlinear interactions, 1D lattices, interatomic potentials, nanostructures.
Mots-clés : Euler – Lagrange
@article{ND_2022_18_2_a2,
     author = {S. A. Surulere and M. Y. Shatalov and J. O. Ehigie and A. A. Adeniji and I. A. Fedotov},
     title = {Nonlinear {Interactions} in {Nanolattices} {Described}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {183--201},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_2_a2/}
}
TY  - JOUR
AU  - S. A. Surulere
AU  - M. Y. Shatalov
AU  - J. O. Ehigie
AU  - A. A. Adeniji
AU  - I. A. Fedotov
TI  - Nonlinear Interactions in Nanolattices Described
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 183
EP  - 201
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_2_a2/
LA  - en
ID  - ND_2022_18_2_a2
ER  - 
%0 Journal Article
%A S. A. Surulere
%A M. Y. Shatalov
%A J. O. Ehigie
%A A. A. Adeniji
%A I. A. Fedotov
%T Nonlinear Interactions in Nanolattices Described
%J Russian journal of nonlinear dynamics
%D 2022
%P 183-201
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_2_a2/
%G en
%F ND_2022_18_2_a2
S. A. Surulere; M. Y. Shatalov; J. O. Ehigie; A. A. Adeniji; I. A. Fedotov. Nonlinear Interactions in Nanolattices Described. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 183-201. http://geodesic.mathdoc.fr/item/ND_2022_18_2_a2/

[1] Toda, M., “Vibration of a Chain with Nonlinear Interaction”, J. Phys. Soc. Jpn., 22:2 (1967), 431–436 | DOI

[2] Surulere, S. A., Shatalov, M. Yu., Mkolesia, A. C., and Fedotov, I. A., “Vibrations in a Growing Nonlinear Chain”, Discontinuity Nonlinearity Complex., 10:3 (2021), 445–459 | MR | Zbl

[3] Sanjay, Sh. S. and Pandey, A. C., “A Brief Manifestation of Nanotechnology”, EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials, Adv. Struct. Mater., 62, Springer, New Delhi, 2017, 47–63 | DOI

[4] Jones, J. E., “On the Determination of Molecular Fields: 2. From the Equation of State of a Gas”, Proc. Roy. Soc. London Ser. A, 106:738 (1924), 463–477 | DOI

[5] Rieth, M., Nano-Engineering in Science and Technology: An Introduction to the World of Nano-Design, Series on the Foundations of Natural Science and Technology, 6, World Sci., Singapore, 2003, 164 pp. | DOI

[6] Biswas, R. and Hamann, D. R., “Interatomic Potentials for Silicon Structural Energies”, Phys. Rev. Lett., 55:19 (1985), 2001–2004 | DOI

[7] Biswas, R. and Hamann, D. R., “New Classical Models for Silicon Structural Energies”, Phys. Rev. B, 36:12 (1987), 6434–6445 | DOI

[8] Erkoç, Ş., “Empirical Many-Body Potential Energy Functions Used in Computer Simulations of Condensed Matter Properties”, Phys. Rep., 278:2 (1997), 79–105 | DOI

[9] Surulere, S. A., Malange, T., Shatalov, M. Yu., and Mkolesia, A. C., “Parameter Estimation of Potentials That Are Solutions of Some Second-Order Ordinary Differential Equation”, Discontinuity Nonlinearity Complex., 2021 (to appear)

[10] Surulere, S. A., Shatalov, M. Yu., Mkolesia, A. C., and Ehigie, J. O., “The Integral-Differential and Integral Approach for the Estimation of the Classical Lennard – Jones and Biswas – Hamann Potentials”, Int. J. Math. Model. Numer. Optim., 10:3 (2020), 239–254

[11] Kaxiras, E. and Pandey, K. C., “New Classical Potential for Accurate Simulation of Atomic Processes in Si”, Phys. Rev. B, 38:17 (1988), 12736–12739 | DOI

[12] Lim, T.-Ch., “Connection between the $2$-Body Energy of the Kaxiras – Pandey and the Biswas – Hamann Potentials”, Czech. J. Phys., 54:9 (2004), 947–963 | DOI

[13] Morse, P. M., “Diatomic Molecules according to the Wave Mechanics: 2. Vibrational Levels”, Phys. Rev., 34:1 (1929), 57–64 | DOI | Zbl

[14] Surulere, S. A., Shatalov, M. Yu., Mkolesia, A. C., Malange, T., and Adeniji, A. A., “The Integral-Differential and Integral Approach for the Exact Solution of the Hybrid Functional Forms for Morse Potential”, Int. J. Appl. Math., 50:2 (2020), 242–250

[15] Olsson, P. A. T., “Transverse Resonant Properties of Strained Gold Nanowires”, J. Appl. Phys., 108:3 (2010), 034318 | DOI

[16] Mishin, Yu., Mehl, M. J., Papaconstantopoulos, D. A., Voter, A. F., and Kress, J. D., “Structural Stability and Lattice Defects in Copper: Ab initio, Tight-Binding, and Embedded-Atom Calculations”, Phys. Rev. B, 63:22 (2001), 224106, 16 pp. | DOI

[17] Baruh, H., Analytical Dynamics, WCB/McGraw-Hill, Boston, 1999, 718 pp.