Homotopy Analysis Method and Time-fractional NLSE
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 309-328.

Voir la notice de l'article provenant de la source Math-Net.Ru

A brief outline of the derivation of the time-fractional nonlinear Schrödinger equation (NLSE) is furnished. The homotopy analysis method (HAM) is applied to study time-fractional NLSE with three separate trapping potential models that we believe have not been investigated yet. The first potential is a double cosine potential $[V(x)=V_1^{}\cos x+V_2^{}\cos 2x]$, the second one is the Morse potential $[V(x)=V_1^{}e^{-2\beta x}+V_2^{}e^{-\beta x}]$, and a hyperbolic potential $[V(x)=V_0^{}\tanh(x)sech(x)]$ is taken as the third model. The fractional derivatives and integrals are described in the Caputo and Riemann Liouville sense, respectively. The solutions are given in the form of convergent series with easily computable components. A physical analysis with graphical representations explicitly reveals that HAM is effective and convenient for solving nonlinear differential equations of fractional order.
Keywords: time fractional nonlinear Schrödinger equation (NLSE), homotopy analysis method (HAM), Caputo derivative, Riemann – Liouville fractional integral operator, trapping potential.
@article{ND_2022_18_2_a10,
     author = {U. Ghosh and T. Das and S. Sarkar},
     title = {Homotopy {Analysis} {Method} and {Time-fractional} {NLSE}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {309--328},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_2_a10/}
}
TY  - JOUR
AU  - U. Ghosh
AU  - T. Das
AU  - S. Sarkar
TI  - Homotopy Analysis Method and Time-fractional NLSE
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 309
EP  - 328
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_2_a10/
LA  - en
ID  - ND_2022_18_2_a10
ER  - 
%0 Journal Article
%A U. Ghosh
%A T. Das
%A S. Sarkar
%T Homotopy Analysis Method and Time-fractional NLSE
%J Russian journal of nonlinear dynamics
%D 2022
%P 309-328
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_2_a10/
%G en
%F ND_2022_18_2_a10
U. Ghosh; T. Das; S. Sarkar. Homotopy Analysis Method and Time-fractional NLSE. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 309-328. http://geodesic.mathdoc.fr/item/ND_2022_18_2_a10/

[1] Thompson, J. M. T. and Stewart, H. B., Nonlinear Dynamics and Chaos, 2nd ed., Wiley, Chichester, 2002, xxii+437 pp. | MR | Zbl

[2] Struble, R. A., Nonlinear Differential Equations, Dover, Mineola, N.Y., 2018, 288 pp.

[3] Simmons, G. F., Differential Equations with Applications and Historical Notes, 3rd ed., CRC, Boca Raton, Fla., 2017, xxi+470 pp. | MR

[4] Mohyud-Din, S. T., Noor, M. A., and Noor, K. I., “Some Relatively New Techniques for Nonlinear Problems”, Math. Probl. Eng., 2009 (2009), ID 234849, 25 | MR | Zbl

[5] He, J.-H., “Homotopy Perturbation Technique”, Comput. Methods Appl. Mech. Engrg., 178:3–4 (1999), 257–262 | MR | Zbl

[6] Nirenberg, L., “Variational and Topological Methods in Nonlinear Problems”, Bull. Amer. Math. Soc. (N. S.), 4:3 (1981), 267–302 | DOI | MR | Zbl

[7] Lakshmikantham, V. and Vatsala, A. S., Generalized Quasilinearization for Nonlinear Problems, Math. Appl., 440, Kluwer, Dordrecht, 1998, x+276 pp. | MR

[8] Efendiev, Y., Hou, T., and Ginting, V., “Multiscale Finite Element Methods for Nonlinear Problems and Their Applications”, Commun. Math. Sci., 2:4 (2004), 553–589 | DOI | MR | Zbl

[9] Katsikadelis, J. T., “The Analog Equation Method: A Boundary-Only Integral Equation Method for Nonlinear Static and Dynamic Problems in General Bodies”, Theoret. Appl. Mech., 27 (2002), 13–38 | DOI | MR | Zbl

[10] Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Acad. Press, New York, 1998, 340 pp. | MR

[11] Applications of Fractional Calculus in Physics, ed. R. Hilfer, World Sci., River Edge, N.J., 2000, viii+463 pp. | MR | Zbl

[12] New Trends in Nanotechnology and Fractional Calculus Applications: Selected Papers from the Internat. Workshop on New Trends in Science and Technology (NTST'08) and the Internat. Workshop on Fractional Differentiation and Its Applications (FDA'08) (Ankara, Turkey (Nov, 2008)), eds. D. Baleanu, Z. B. Güvenç, J. A. Tenreiro Machado, Springer, New York, 2010, xii+531 pp.

[13] Dalir, M. and Bashour, M., “Applications of Fractional Calculus”, Appl. Math. Sci. (Ruse), 4:21–24 (2010), 1021–1032 | MR | Zbl

[14] Yang, A.-M., Zhang, Y.-Zh., Cattani, C., Xie, G.-N., Rashidi, M. M., Zhou, Y.-J., and Yang, X.-J., “Application of Local Fractional Series Expansion Method to Solve Klein – Gordon Equations on Cantor Sets”, Abstr. Appl. Anal., 2014, ID 372741, 6 pp. | MR

[15] Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, including Papers from the Minisymposium on Fractional Derivatives and Their Applications (ENOC'2005, Eindhoven, Aug 2005), and the 2nd Symposium on Fractional Derivatives and Their Applications (ASME-DETC'2005, Long Beach, Calif., Sept 2005), eds. J. Sabatier, O. P. Agrawal, J. A. Tenreiro Machado, Springer, Dordrecht, 2007, xiv+552 pp. | MR

[16] Abdel-Salam, E. A.-B. and Gumma, E. A. E., “Analytical Solution of Nonlinear Space-Time Fractional Differential Equations Using the Improved Fractional Riccati Expansion Method”, Ain Shams Eng. J., 6:2 (2015), 613–620 | DOI | MR

[17] Singh, J., Kumar, D., and Sushila, D., “Homotopy Perturbation Sumudu Transform Method for Nonlinear Equations”, Adv. Theor. Appl. Mech., 4:4 (2011), 165–175 | Zbl

[18] Guo, Sh., Mei, L., Li, Y., and Sun, Y., “The Improved Fractional Sub-Equation Method and Its Applications to the Space-Time Fractional Differential Equations in Fluid Mechanics”, Phys. Lett. A, 376:4 (2012), 407–411 | DOI | MR | Zbl

[19] Saadatmandi, A. and Dehghan, M., “A New Operational Matrix for Solving Fractional-Order Differential Equations”, Comput. Math. Appl., 59:3 (2010), 1326–1336 | DOI | MR | Zbl

[20] Safari, M., Ganji, D. D., and Moslemi, M., “Application of He's Variational Iteration Method and Adomian's Decomposition Method to the Fractional KdV – Burgers – Kuramoto Equation”, Comput. Math. Appl., 58:11–12 (2009), 2091–2097 | DOI | MR | Zbl

[21] Saha Ray, S. and Bera, R. K., “An Approximate Solution of a Nonlinear Fractional Differential Equation by Adomian Decomposition Method”, Appl. Math. Comput., 167:1 (2005), 561–571 | MR | Zbl

[22] Wu, G.-Ch. and Lee, E. W. M., “Fractional Variational Iteration Method and Its Application”, Phys. Lett. A, 374:25 (2010), 2506–2509 | DOI | MR | Zbl

[23] Wang, H., Wang, K., and Sircar, T., “A Direct $O(N\log^2N)$ Finite Difference Method for Fractional Diffusion Equations”, J. Comput. Phys., 229:21 (2010), 8095–8104 | DOI | MR | Zbl

[24] Wu, J.-L., “A Wavelet Operational Method for Solving Fractional Partial Differential Equations Numerically”, Appl. Math. Comput., 214:1 (2009), 31–40 | MR | Zbl

[25] Bekir, A., Güner, Ö., and Cevikel, A. C., “Fractional Complex Transform and Exp-Function Methods for Fractional Differential Equations”, Abstr. Appl. Anal., 2013, ID 426462, 8 pp. | MR

[26] Yan, Y., Pal, K., and Ford, N. J., “Higher Order Numerical Methods for Solving Fractional Differential Equations”, BIT Numer. Math., 54:2 (2014), 555–584 | DOI | MR | Zbl

[27] Shah, A., Khan, R. A., Khan, A., Khan, H., and Gómez-Aguilar, J. F., “Investigation of a System of Nonlinear Fractional Order Hybrid Differential Equations under Usual Boundary Conditions for Existence of Solution”, Math. Methods Appl. Sci., 44:2 (2021), 1628–1638 | DOI | MR | Zbl

[28] Aydogan, S. M., Gómez Aguilar, J. F., Baleanu, D., Rezapour, Sh., and Samei, M. E., “Approximate Endpoint Solutions for a Class of Fractional $q$-Differential Inclusions by Computational Results”, Fractals, 28:8 (2020), 2040029, 18 pp. | DOI | MR | Zbl

[29] Ali, G. and Gómez Aguilar, J. F., “Approximation of Partial Integro Differential Equations with a Weakly Singular Kernel Using Local Meshless Method”, Alex. Eng. J., 59:4 (2020), 2091–2100 | DOI | MR

[30] Abdeljawad, Th., Atangana, A., Gómez-Aguilar, J. F., and Jarad, F., “On a More General Fractional Integration by Parts Formulae and Applications”, Phys. A, 536 (2019), 122494, 17 pp. | DOI | MR | Zbl

[31] Khan, A., Khan, H., Gómez-Aguilar, J. F., and Abdeljawad, Th., “Existence and Hyers – Ulam Stability for a Nonlinear Singular Fractional Differential Equations with Mittag – Leffler Kernel”, Chaos Solitons Fractals, 127 (2019), 422–427 | DOI | MR | Zbl

[32] Sulem, C. and Sulem, P.-L., The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Appl. Math. Sci., 139, Springer, New York, 2007, XVI+350 pp. | MR

[33] Gippius, N., Tikhodeev, S., Kulakovskii, V., Krizhanovskii, D., and Tartakovskii, A., “Nonlinear Dynamics of Polariton Scattering in Semiconductor Microcavity: Bistability vs. Stimulated Scattering”, Europhys. Lett., 67:6 (2004), 997–1003 | DOI

[34] Lü, X., Zhu, H.-W., Yao, Zh.-Zh., Meng, X.-H., Zhang, Ch., Zhang, Ch.-Y., and Tian, B., “Multisoliton Solutions in Terms of Double Wronskian Determinant for a Generalized Variable-Coefficient Nonlinear Schrödinger Equation from Plasma Physics Arterial Mechanics, Fluid Dynamics and Optical Communications”, Ann. Physics, 323:8 (2008), 1947–1955 | DOI | MR | Zbl

[35] Caputo, M. and Fabrizio, M., “On the Singular Kernels for Fractional Derivatives: Some Applications to Partial Differential Equations”, Progr. Fract. Differ. Appl., 7:2 (2021), 79–82 | DOI

[36] Heymans, N. and Podlubny, I., “Physical Interpretation of Initial Conditions for Fractional Differential Equations with Riemann – Liouville Fractional Derivatives”, Rheol. Acta, 45 (2006), 765–771 | DOI | MR

[37] Biswas, S., Ghosh, U., Sarkar, S., and Das, S., “Approximate Solution of Space-Time Fractional KdV Equation and Coupled KdV Equations”, J. Phys. Soc. Jpn, 89 (2020), 014002, 10 pp. | DOI | MR

[38] Pakhira, R., Ghosh, U., and Sarkar, S., “Study of Memory Effect in an Inventory Model with Linear Demand and Shortage”, I. J. Math. Sci. Comput., 5:2 (2019), 54–70

[39] Laskin, N., “Fractional Quantum Mechanics and Lévy Path Integrals”, Phys. Lett. A, 268:4–6 (2000), 298–305 | DOI | MR | Zbl

[40] Agrawal, O. P., “Formulation of Euler – Lagrange Equations for Fractional Variational Problems”, J. Math. Anal. Appl., 272:1 (2002), 368–379 | DOI | MR | Zbl

[41] Hasan, E. H., “Fractional Variational Problems of Euler – Lagrange Equations with Holonomic Constrained Systems”, Appl. Phys. Res., 8:3 (2016), 60–65 | DOI

[42] Klimek, M., “Lagrangean and Hamiltonian Fractional Sequential Mechanics”, Czechoslov. J. Phys., 52:11 (2002), 1247–1253 | DOI | MR | Zbl

[43] Antar, N. and Pamuk, N., “Exact Solutions of Two-Dimensional Nonlinear Schrödinger Equations with External Potentials”, Appl. Math. Comput., 2:6 (2013), 152–158 | DOI

[44] Khan, N. A., Jamil, M., and Ara, A., “Approximate Solutions to Time-Fractional Schrödinger Equation via Homotopy Analysis Method”, Int. Sch. Res. Notices, 2012 (2012), ID 197068, 11 pp.

[45] Devi, A. and De, A. K., “Theoretical Investigation on Nonlinear Optical Effects in Laser Trapping of Dielectric Nanoparticles with Ultrafast Pulsed Excitation”, Opt. Express, 24:19 (2016), 21485–21496 | DOI

[46] Stanislavova, M. and Stefanov, A. G., “Ground States for the Nonlinear Schrödinger Equation under a General Trapping Potential”, J. Evol. Equ., 21:1 (2021), 671–697 | DOI | MR | Zbl

[47] Sakaguchi, H. and Tamura, M., “Scattering and Trapping of Nonlinear Schrödinger Solitons in External Potentials”, J. Phys. Soc. Japan, 73:3 (2004), 503–506 | DOI | MR

[48] Liao, S., Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman Hall/CRC, Boca Raton, Fla., 2003, 336 pp. | MR

[49] Fermi, E., Pasta, J., and Ulam, S., “Studies of Nonlinear Problems”, Los Alamos Report LA-1940, 1955, 22 pp. | Zbl

[50] He, J.-H. and El-Dib, Y. O., “Homotopy Perturbation Method for Fangzhu Oscillator”, J. Math. Chem., 58:10 (2020), 2245–2253 | DOI | MR | Zbl

[51] Liao, S., “Comparison between the Homotopy Analysis Method and Homotopy Perturbation Method”, Appl. Math. Comput., 169:2 (2005), 1186–1194 | MR | Zbl

[52] Ellahi, R., Abbasbandy, S., Hayat, T., and Zeeshan, A., “On Comparison of Series and Numerical Solutions for Second Painlevé Equation”, Numer. Methods Partial Differential Equations, 26:5 (2010), 1070–1078 | DOI | MR | Zbl

[53] Hai, K., Hai, W., and Chen, Q., “Exact Manipulations to Bloch States of a Particle in a Double Cosine Potential”, Phys. Lett. A, 367:6 (2007), 445–449 | DOI | MR | Zbl

[54] Abbasbandy, S. and Jalili, M., “Determination of Optimal Convergence-Control Parameter Value in Homotopy Analysis Method”, Numer. Algorithms, 64:4 (2013), 593–605 | DOI | MR | Zbl

[55] Liao, S., Homotopy Analysis Method in Nonlinear Differential Equations, Springer, Berlin, 2012, x, 400 pp. | Zbl

[56] Nasarenko, A. Ya., Spiridonov, V. P., Butayev, B. S., and Zasorin, E. Z., “Second-Order Perturbation Approach to Anharmonic Analysis of Molecules by Electron Diffraction: 3. Morse-Like Potential Function of SnCl$_2$, SnBr$_2$, SnI$_2$, Ga$_2$O, and Tl$_2$O”, J. Mol. Struct., 119:3–4 (1985), 263–270 | DOI