Homotopy Analysis Method and Time-fractional NLSE
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 309-328

Voir la notice de l'article provenant de la source Math-Net.Ru

A brief outline of the derivation of the time-fractional nonlinear Schrödinger equation (NLSE) is furnished. The homotopy analysis method (HAM) is applied to study time-fractional NLSE with three separate trapping potential models that we believe have not been investigated yet. The first potential is a double cosine potential $[V(x)=V_1^{}\cos x+V_2^{}\cos 2x]$, the second one is the Morse potential $[V(x)=V_1^{}e^{-2\beta x}+V_2^{}e^{-\beta x}]$, and a hyperbolic potential $[V(x)=V_0^{}\tanh(x)sech(x)]$ is taken as the third model. The fractional derivatives and integrals are described in the Caputo and Riemann Liouville sense, respectively. The solutions are given in the form of convergent series with easily computable components. A physical analysis with graphical representations explicitly reveals that HAM is effective and convenient for solving nonlinear differential equations of fractional order.
Keywords: time fractional nonlinear Schrödinger equation (NLSE), homotopy analysis method (HAM), Caputo derivative, Riemann – Liouville fractional integral operator, trapping potential.
@article{ND_2022_18_2_a10,
     author = {U. Ghosh and T. Das and S. Sarkar},
     title = {Homotopy {Analysis} {Method} and {Time-fractional} {NLSE}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {309--328},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_2_a10/}
}
TY  - JOUR
AU  - U. Ghosh
AU  - T. Das
AU  - S. Sarkar
TI  - Homotopy Analysis Method and Time-fractional NLSE
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 309
EP  - 328
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_2_a10/
LA  - en
ID  - ND_2022_18_2_a10
ER  - 
%0 Journal Article
%A U. Ghosh
%A T. Das
%A S. Sarkar
%T Homotopy Analysis Method and Time-fractional NLSE
%J Russian journal of nonlinear dynamics
%D 2022
%P 309-328
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_2_a10/
%G en
%F ND_2022_18_2_a10
U. Ghosh; T. Das; S. Sarkar. Homotopy Analysis Method and Time-fractional NLSE. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 309-328. http://geodesic.mathdoc.fr/item/ND_2022_18_2_a10/