Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_2_a1, author = {A. V. Chernyshov and S. A. Chernyshova}, title = {A {Method} of {Investigating} the {Phenomenon} of}, journal = {Russian journal of nonlinear dynamics}, pages = {171--181}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_2_a1/} }
A. V. Chernyshov; S. A. Chernyshova. A Method of Investigating the Phenomenon of. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 171-181. http://geodesic.mathdoc.fr/item/ND_2022_18_2_a1/
[1] Pershicz, R. Ya., Controllability and Steering the Vessel, Sudostroenie, Leningrad, 1983, 272 pp. (Russian)
[2] Handbook of Ship Theory: In 3 Vols., v. 3, ed. Ya. I. Voytkunskiy, Sudostroenie, Leningrad, 1985, 542 pp. (Russian)
[3] Basin, A. M., The Theory of Stability on the Course and Turnableness of the Ship, GITTL, Moscow, 1949, 176 pp. (Russian)
[4] Ship's Propulsion and Controllability, eds. V. F. Bavin, V. I. Zaikov, V. G. Pavlenko, L. B. Sandler, Transport, Moscow, 1991, 397 pp. (Russian)
[5] Chernyshov, A. V., Reasoning of the Type of Steering Algorithm,, Cand. Tech. Sci. Dissertation, Volga State Academy of Water Transport, Nizhniy Novgorod, 2004, 194 pp. (Russian)
[6] Chernyshov, A. V. and Chirkova, M. M., “Statistical and Dynamic Features of Steerable Objects (by the Example of Displacement Ships”, Izv. Ross. Akad. Nauk. Ser. Mat. Teor. Sist. Upr., 2003, no. 4, 153–158 (Russian)
[7] Chirkova, M. M., The Development of Methods of Identification and Control of Unstable Object on the Course with Hidden Dynamic Features: The Case of River Displacement Vessels, Doctoral Dissertation, Volga State Academy of Water Transport, Nizhniy Novgorod, 1997, 261 pp. (Russian)
[8] Feigin, M. I., “Bifurcation Approach to the Study of a Dynamc System”, Sorosovsk. Obrazovat. Zh., 7:2 (2001), 121–127 (Russian)
[9] Feigin, M. I., “Dynamic Systems Operating in the Accompaniment of Dangerous Bifurcations”, Sorosovsk. Obrazovat. Zh., 5:10 (1999), 122–127 (Russian)
[10] Feigin, M. I., “Peculiarities in Dynamic System Behavior in the Vicinity of Dangerous Bifurcation Boundary”, Sorosovsk. Obrazovat. Zh., 5:7 (1999), 122–127 (Russian)
[11] Feigin, M. I., “Manifestation of Bifurcation Memory Effects in Dynamic System Behavior”, Sorosovsk. Obrazovat. Zh., 7:3 (2001), 121–127 (Russian)
[12] Feigin, M. I. and Chirkova, M. M., “On the Existence of an Region of Reduced Controllability for Ships Unstable on a Straight Course”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1985, no. 2, 73–78 (Russian)
[13] Andronov, A. A., Vitt, A. A., and Khaikin, S. E., Theory of Oscillators, Pergamon, Oxford, 1966, 848 pp. | MR | Zbl
[14] Bautin, N. N. and Leontovich, E. A., Methods and Techniques of the Qualitative Study of Dynamical Systems on the Plane, 2nd ed., Nauka, Moscow, 1990, 496 pp. (Russian) | MR