On Ziegler Effect with Arbitrary Large Viscous Friction
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 161-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a mechanical system with two degrees of freedom simulating the motion of rotor blades on an elastic bushing of a medium-sized helicopter. For small values of some problem parameters, the destabilizing effect due to small linear viscous friction forces has been studied earlier. Here we study the problem with arbitrary large friction forces for arbitrary values of the problem parameters. In the plane of parameters, the regions of asymptotic stability and instability are calculated. As a result, necessary and sufficient conditions for the existence of a destabilizing effect under the action of potential, follower forces and arbitrary friction forces have been obtained. It is shown that, if some critical friction coefficient $k_*$ tends to infinity, then there exists a Ziegler area with arbitrarily large dissipative forces.
Keywords: Non-conservative mechanical system, large linear dissipative forces, follower force, Ziegler's effect, Lyapunov's stability.
@article{ND_2022_18_2_a0,
     author = {P. S. Krasil'nikov and A. Yu. Maiorov},
     title = {On {Ziegler} {Effect} with {Arbitrary} {Large} {Viscous} {Friction}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {161--170},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_2_a0/}
}
TY  - JOUR
AU  - P. S. Krasil'nikov
AU  - A. Yu. Maiorov
TI  - On Ziegler Effect with Arbitrary Large Viscous Friction
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 161
EP  - 170
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_2_a0/
LA  - en
ID  - ND_2022_18_2_a0
ER  - 
%0 Journal Article
%A P. S. Krasil'nikov
%A A. Yu. Maiorov
%T On Ziegler Effect with Arbitrary Large Viscous Friction
%J Russian journal of nonlinear dynamics
%D 2022
%P 161-170
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_2_a0/
%G en
%F ND_2022_18_2_a0
P. S. Krasil'nikov; A. Yu. Maiorov. On Ziegler Effect with Arbitrary Large Viscous Friction. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 2, pp. 161-170. http://geodesic.mathdoc.fr/item/ND_2022_18_2_a0/

[1] Rabinovich, B. I., Introduction to Dynamics of Spacecraft Carrier Rockets, Mashinostroenie, Moscow, 1975, 416 pp. (Russian)

[2] Ziegler, H., “Die Stabilitätskriterien der Elastomechanik”, Ing. Arch., 20:1 (1952), 49–56 | DOI | MR | Zbl

[3] Seiranyan, A. P., “Destabilization Paradox in the Stability Problems for Non-Conservative Systems”, Uspekhi Mekh., 13:2 (1990), 89–124 (Russian) | MR

[4] Bolotin, V. V., Nonconservative Problems of the Theory of Elastic Stability, Macmillan, New York, 1963, 324 pp. | MR

[5] Herrmann, G., “Stability of Equilibrium of Elastic Systems Subjected to Nonconservative Forces”, Appl. Mech. Rev., 20 (1967), 103–108

[6] Prikl. Mat. Mekh., 74:1 (2010), 74–88 (Russian) | DOI | MR

[7] Prikl. Mat. Mekh., 75:3 (2011), 384–395 (Russian) | DOI | MR | Zbl

[8] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2009, no. 1, 47–51 (Russian) | MR

[9] Dokl. Akad. Nauk, 322:6 (1992), 1040–1042 (Russian) | MR | Zbl

[10] Prikl. Mat. Mekh., 38:2 (1974), 246–253 (Russian) | DOI | MR

[11] Prikl. Mat. Mekh., 39:1 (1975), 53–58 (Russian) | DOI | MR | Zbl

[12] Krasilnikov, P. S. and Amelin, R. N., “On the Destabilization of Some Equilibriums of Nonconservative System with Three Degrees of Freedom”, Vestn. MAI, 20:4 (2013), 191–197 (Russian)

[13] Prikl. Mat. Mekh., 82:5 (2018), 582–591 (Russian) | DOI | Zbl

[14] Baikov, A. Ye. and Maiorov, A. Yu., “On the Equilibrium Position Stability of Discrete Model of Filling Hose under the Action of Reactive Force”, Russian J. Nonlinear Dyn., 11:1 (2015), 127–146 (Russian) | Zbl

[15] Kirillov, O. N., Nonconservative Stability Problems of Modern Physics, De Gruyter Stud. in Math., 14, de Gruyter, Boston, 2013, 429 pp. | MR | Zbl

[16] Vestn. Sankt-Peterburgsk. Univ. Matem., Mekh., Astronom., 4(62):4 (2017), 631–641 (Russian) | DOI | MR | Zbl

[17] Aleksandrov, A. Yu., Aleksandrova, E. B., and Tikhonov, A. A., “Monoaxial Attitude Stabilization of a Rigid Body under Vanishing Restoring Torque”, Nonlinear Dyn. Syst. Theory, 18:1 (2018), 12–21 | MR | Zbl

[18] Nikolaev, E. I. and Pantyukhin, K. N., “Dynamical Stability of a Helicopter under Bearing Rotor Spinning-Up on the Earth by Considering Blade Elasticity”, Vestn. MAI, 23:3 (2016), 112–120 (Russian)

[19] Rezgui, D., Lowenberg, M. H., Jones, M., and Monteggia, C., “Continuation and Bifurcation Analysis in Helicopter Aeroelastic Stability Problems”, J. Guid. Control Dynam., 37:3 (2014), 889–897 | DOI

[20] Rezgui, D. and Lowenberg, M. H., “On the Nonlinear Dynamics of a Rotor in Autorotation: A Combined Experimental and Numerical Approach”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 373:2051 (2015), 20140411, 23 pp. | MR | Zbl

[21] Rezgui, D. and Lowenberg, M. H., “Nonlinear Blade Stability for a Scaled Autogyro Rotor at High Advance Ratios”, J. Am. Helicopter Soc., 65:1 (2020), 1, 19 pp. | DOI

[22] Merkin, D. R., Introduction to the Theory of Stability, Texts Appl. Math., 24, Springer, New York, 1997, xx+319 pp. | MR

[23] Prikl. Mat. Mekh., 84:6 (2020), 677–686 (Russian) | DOI | Zbl

[24] Bulatovic, R. M., “A Stability Criterion for Circulatory Systems”, Acta Mech., 228:7 (2017), 2713–2718 | DOI | MR | Zbl

[25] Bellman, R., Introduction to Matrix Analysis, McGraw-Hill, New York, 1970, xxiii+403 pp. | MR | Zbl

[26] Faddeev, D. K., Lectures in Algebra, Nauka, Moscow, 1984, 416 pp. (Russian) | MR