Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_1_a7, author = {L. Atepor and R. N. A. Akoto}, title = {Dynamic {Effect} of the {Parametric} {Excitation} {Force}}, journal = {Russian journal of nonlinear dynamics}, pages = {137--157}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_1_a7/} }
L. Atepor; R. N. A. Akoto. Dynamic Effect of the Parametric Excitation Force. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 137-157. http://geodesic.mathdoc.fr/item/ND_2022_18_1_a7/
[1] Kecik, K., Mitura, A., Sado, D., and Warminski, J., “Magnetorheological Damping and Semi-Active Control of an Autoparametric Vibration Absorber”, Meccanica, 49:8 (2014), 1887–1900 | DOI | MR | Zbl
[2] Bajaj, A. K., Chang, S. I., and Johnson, J. M., “Amplitude Modulated Dynamics of a Resonantly Excited Autoparametric Two Degree-of-Freedom System”, Nonlinear Dyn., 5 (1994), 433–457 | DOI
[3] Lee, W. K. and Hsu, C. S., “A Global Analysis of an Harmonically Excited Spring-Pendulum System with Internal Resonance”, J. Sound Vibration, 171:3 (1994), 335–359 | DOI | MR | Zbl
[4] Cartmell, M. P. and Lawson, J., “Performance Enhancement of an Autoparametric Vibration Absorber by Means of Computers Control”, J. Sound Vibration, 177:2 (1994), 173–195 | DOI | Zbl
[5] Verhust, F., “Autoparametric Resonance, Survey and New Results”, Proc. of the 2nd European Nonlinear Oscillation Conf. (Prague, 1996), v. 1, 483–488
[6] Warminski, J. and Kecik, K., “Autoparametric Vibrations of a Nonlinear System with a Pendulum and Magnetorheological Damping”, Nonlinear Dynamic Phenomena in Mechanics: Solid Mechanics and Its Applications, eds. J. Warminski, S. Lenci, M. P. Cartmell, G. Rega, M. Wiercigroch, Springer, Dordrecht, 2012, 1–61 | MR
[7] Kecik, K. and Warminski, J., “Dynamics of an Autoparametric Pendulum-Like System with a Nonlinear Semiactive Suspension”, Math. Probl. Eng., 2011 (2011), 451047, 15 pp. | DOI | MR | Zbl
[8] Sado, D., “Nonlinear Dynamics of a Non-Ideal Autoparametric System with MR Damper”, Shock. Vib., 20 (2013), 1065–1072 | DOI
[9] Kecik, K. and Kapitaniak, M., “Parametric Analysis of Magnetorheological Damped Pendulum Vibration Absorber”, Int. J. Struct. Stab. Dyn., 14:08 (2014), 1440015, 13 pp. | DOI
[10] Cartmell, M. P., “On the Need for Control of Nonlinear Oscillations in Machine System”, Meccanica, 38 (2003), 185–212 | DOI | Zbl
[11] Zhang, A., Sorokin, V., and Li, H., “Dynamic Analysis of a New Autoparametric Pendulum Absorber under the Effects of Magnetic Forces”, J. Sound Vibration, 485 (2020), 115549 | DOI
[12] Nayfeh, A. H., Perturbation Methods, Wiley, New York, 1973, 425 pp. | MR | Zbl
[13] Nayfeh, A. H. and Mook, D. T., Nonlinear Oscillations, Wiley, New York, 1995, 720 pp. | MR
[14] Warminski, J. and Kecik, K., “Autoparametric Vibrations of a Nonlinear System with Pendulum”, Math. Probl. Eng., 2006 (2006), 80705, 19 pp. | DOI | MR | Zbl
[15] Vazquez-Gonzalez, B. and Silva-Navarro, G., “Evaluation of the Autoparametric Pendulum Vibration Absorber for a Duffing System”, Shock. Vib., 15 (2008), 355–368 | DOI | MR
[16] Atepor, L., Vibration Analysis and Control of Flexible Rotor System Using Smart Materials, PhD Thesis, Univ. of Glasgow, Glasgow, UK, 2008, 246 pp.
[17] Nayfeh, A. H., Introduction to Perturbation Techniques, Wiley, New York, 1981, 536 pp. | MR | Zbl
[18] Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Yu. A., Sandstede, B., and Wang, X., AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont), , 1998 ftp://ftp.cs.concordia.ca/pub/doedel/auto | Zbl
[19] Brzeski, P., Perlikowski, P., Yanchuk, S., and Kapitaniak, T., “The Dynamics of the Pendulum Suspended on the Forced Duffing Oscillator”, J. Sound Vibration, 331:24 (2012), 5347–5357 | DOI
[20] Kecik, K. and Warminski, J., “Instabilities in the Main Parametric Resonance Area of a Mechanical System with a Pendulum”, J. Sound Vibration, 322:3 (2009), 612–628 | DOI
[21] Nusse, H. E. and York, J. A., Dynamics: Numerical Explorations, Appl. Math. Sci., 101, Springer, New York, 1994, XIII, 485 pp. | DOI | MR | Zbl
[22] Chang-Jian, C. W. and Chen, C.-K., “Bifurcation and Chaos Analysis of a Flexible Rotor Supported by Turbulent Long Journal Bearings”, Chaos Solitons Fractals, 34:4 (2007), 1160–1179 | DOI | MR
[23] Mathematica: Version 12.3.1, Wolfram Research, Inc., Illinois, 2021
[24] Kugushev, E. I. and Popova, T. V., “Estimation of Accuracy of the Averaging Method for Systems with Multifrequency Perturbations”, Russian J. Nonlinear Dyn., 16:2 (2020), 379–394 | MR | Zbl
[25] Kuzenov, V. V., Ryzhkov, S. V., and Starostin, A. V., “Development of a Mathematical Model and the Numerical Solution Method in a Combined Impact Scheme for MIF Target”, Russian J. Nonlinear Dyn., 16:2 (2020), 325–341 | MR
[26] Seregin, S. V., “The Influence of Shape Imperfections on the Vibrations of a Ring Resonator of a Wave Solidstate Gyroscope”, Nelin. Dinam., 13:3 (2017), 423–431 (Russian) | DOI | MR