Dynamic Effect of the Parametric Excitation Force
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 137-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

Autoparametric vibration absorber is a machine invented to suppress vibration and has been widely employed in many fields of engineering. Previous works reported by various researchers have shown that dangerous motions, like the full rotation of the pendulum subsystem or chaotic motion, can emerge due to small perturbations of initial conditions or system parameters. To tackle this problem, a new model of the autoparametric vibration absorber with an attached piezoelectric actuator exciter is proposed in this paper. Under the effects of parametric excitation forces produced by the exciter, the vibration absorber will absorb more vibration energy. The dynamic response of the new system is studied analytically using the method of multiple scales and the results validated numerically using the continuation method and detailed bifurcation analysis. The results show that the vibration amplitudes of the subsystems are reduced, the region over which the absorption takes place gets widened and chaotic regions are removed with the introduction of parametric excitation forces in contrast to that of the original model of the autoparametric vibration absorber.
Keywords: autoparametric vibration absorber, broaden, parametric excitation forces.
Mots-clés : bifurcation, chaos
@article{ND_2022_18_1_a7,
     author = {L. Atepor and R. N. A. Akoto},
     title = {Dynamic {Effect} of the {Parametric} {Excitation} {Force}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {137--157},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_1_a7/}
}
TY  - JOUR
AU  - L. Atepor
AU  - R. N. A. Akoto
TI  - Dynamic Effect of the Parametric Excitation Force
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 137
EP  - 157
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_1_a7/
LA  - en
ID  - ND_2022_18_1_a7
ER  - 
%0 Journal Article
%A L. Atepor
%A R. N. A. Akoto
%T Dynamic Effect of the Parametric Excitation Force
%J Russian journal of nonlinear dynamics
%D 2022
%P 137-157
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_1_a7/
%G en
%F ND_2022_18_1_a7
L. Atepor; R. N. A. Akoto. Dynamic Effect of the Parametric Excitation Force. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 137-157. http://geodesic.mathdoc.fr/item/ND_2022_18_1_a7/

[1] Kecik, K., Mitura, A., Sado, D., and Warminski, J., “Magnetorheological Damping and Semi-Active Control of an Autoparametric Vibration Absorber”, Meccanica, 49:8 (2014), 1887–1900 | DOI | MR | Zbl

[2] Bajaj, A. K., Chang, S. I., and Johnson, J. M., “Amplitude Modulated Dynamics of a Resonantly Excited Autoparametric Two Degree-of-Freedom System”, Nonlinear Dyn., 5 (1994), 433–457 | DOI

[3] Lee, W. K. and Hsu, C. S., “A Global Analysis of an Harmonically Excited Spring-Pendulum System with Internal Resonance”, J. Sound Vibration, 171:3 (1994), 335–359 | DOI | MR | Zbl

[4] Cartmell, M. P. and Lawson, J., “Performance Enhancement of an Autoparametric Vibration Absorber by Means of Computers Control”, J. Sound Vibration, 177:2 (1994), 173–195 | DOI | Zbl

[5] Verhust, F., “Autoparametric Resonance, Survey and New Results”, Proc. of the 2nd European Nonlinear Oscillation Conf. (Prague, 1996), v. 1, 483–488

[6] Warminski, J. and Kecik, K., “Autoparametric Vibrations of a Nonlinear System with a Pendulum and Magnetorheological Damping”, Nonlinear Dynamic Phenomena in Mechanics: Solid Mechanics and Its Applications, eds. J. Warminski, S. Lenci, M. P. Cartmell, G. Rega, M. Wiercigroch, Springer, Dordrecht, 2012, 1–61 | MR

[7] Kecik, K. and Warminski, J., “Dynamics of an Autoparametric Pendulum-Like System with a Nonlinear Semiactive Suspension”, Math. Probl. Eng., 2011 (2011), 451047, 15 pp. | DOI | MR | Zbl

[8] Sado, D., “Nonlinear Dynamics of a Non-Ideal Autoparametric System with MR Damper”, Shock. Vib., 20 (2013), 1065–1072 | DOI

[9] Kecik, K. and Kapitaniak, M., “Parametric Analysis of Magnetorheological Damped Pendulum Vibration Absorber”, Int. J. Struct. Stab. Dyn., 14:08 (2014), 1440015, 13 pp. | DOI

[10] Cartmell, M. P., “On the Need for Control of Nonlinear Oscillations in Machine System”, Meccanica, 38 (2003), 185–212 | DOI | Zbl

[11] Zhang, A., Sorokin, V., and Li, H., “Dynamic Analysis of a New Autoparametric Pendulum Absorber under the Effects of Magnetic Forces”, J. Sound Vibration, 485 (2020), 115549 | DOI

[12] Nayfeh, A. H., Perturbation Methods, Wiley, New York, 1973, 425 pp. | MR | Zbl

[13] Nayfeh, A. H. and Mook, D. T., Nonlinear Oscillations, Wiley, New York, 1995, 720 pp. | MR

[14] Warminski, J. and Kecik, K., “Autoparametric Vibrations of a Nonlinear System with Pendulum”, Math. Probl. Eng., 2006 (2006), 80705, 19 pp. | DOI | MR | Zbl

[15] Vazquez-Gonzalez, B. and Silva-Navarro, G., “Evaluation of the Autoparametric Pendulum Vibration Absorber for a Duffing System”, Shock. Vib., 15 (2008), 355–368 | DOI | MR

[16] Atepor, L., Vibration Analysis and Control of Flexible Rotor System Using Smart Materials, PhD Thesis, Univ. of Glasgow, Glasgow, UK, 2008, 246 pp.

[17] Nayfeh, A. H., Introduction to Perturbation Techniques, Wiley, New York, 1981, 536 pp. | MR | Zbl

[18] Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Yu. A., Sandstede, B., and Wang, X., AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont), , 1998 ftp://ftp.cs.concordia.ca/pub/doedel/auto | Zbl

[19] Brzeski, P., Perlikowski, P., Yanchuk, S., and Kapitaniak, T., “The Dynamics of the Pendulum Suspended on the Forced Duffing Oscillator”, J. Sound Vibration, 331:24 (2012), 5347–5357 | DOI

[20] Kecik, K. and Warminski, J., “Instabilities in the Main Parametric Resonance Area of a Mechanical System with a Pendulum”, J. Sound Vibration, 322:3 (2009), 612–628 | DOI

[21] Nusse, H. E. and York, J. A., Dynamics: Numerical Explorations, Appl. Math. Sci., 101, Springer, New York, 1994, XIII, 485 pp. | DOI | MR | Zbl

[22] Chang-Jian, C. W. and Chen, C.-K., “Bifurcation and Chaos Analysis of a Flexible Rotor Supported by Turbulent Long Journal Bearings”, Chaos Solitons Fractals, 34:4 (2007), 1160–1179 | DOI | MR

[23] Mathematica: Version 12.3.1, Wolfram Research, Inc., Illinois, 2021

[24] Kugushev, E. I. and Popova, T. V., “Estimation of Accuracy of the Averaging Method for Systems with Multifrequency Perturbations”, Russian J. Nonlinear Dyn., 16:2 (2020), 379–394 | MR | Zbl

[25] Kuzenov, V. V., Ryzhkov, S. V., and Starostin, A. V., “Development of a Mathematical Model and the Numerical Solution Method in a Combined Impact Scheme for MIF Target”, Russian J. Nonlinear Dyn., 16:2 (2020), 325–341 | MR

[26] Seregin, S. V., “The Influence of Shape Imperfections on the Vibrations of a Ring Resonator of a Wave Solidstate Gyroscope”, Nelin. Dinam., 13:3 (2017), 423–431 (Russian) | DOI | MR