Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_1_a6, author = {L. A. Kalyakin}, title = {Asymptotics of {Dynamical} {Saddle-node} {Bifurcations}}, journal = {Russian journal of nonlinear dynamics}, pages = {119--135}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_1_a6/} }
L. A. Kalyakin. Asymptotics of Dynamical Saddle-node Bifurcations. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 119-135. http://geodesic.mathdoc.fr/item/ND_2022_18_1_a6/
[1] Bautin, N. N. and Leontovich, E. A., Methods and Techniques for Qualitative Research of Dynamic Systems on the Plane, 2nd ed., Nauka, Moscow, 1990, 486 pp. (Russian) | MR
[2] Kuznetsov, A. P., Dynamical Systems and Bifurcations, Nauka, Saratov, 2015, 168 pp. (Russian)
[3] Tr. Inst. Mat. i Mekh. UrO RAN, 13:2 (2007), 104–119 (Russian) | DOI | Zbl
[4] Kalyakin, L. A., “Asymptotics of the Solution for the System of Landau – Lifsitz Equations under Saddle–Node Dynamical Bifurcation”, Algebra i Analiz, 33:2 (2021), 56–81 (Russian) | MR
[5] Il'in, A. M., Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, v. 102, Transl. Math. Monogr., AMS, Providence, R.I., 1992, x+281 pp. | DOI | MR
[6] Differ. Uravn., 23:12 (1987), 2060–2067 (Russian) | MR | Zbl
[7] Differ. Uravn., 24:2 (1988), 226–233 (Russian) | MR | Zbl
[8] Baer, S. M., Erneux, T., and. Rinzel, J., “The Slow Passage through a Hopf Bifurcation: Delay, Memory Effects, and Resonance”, SIAM J. Appl. Math., 49:1 (1989), 55–71 | DOI | MR | Zbl
[9] Vasileva, A. B. and Butuzov, V. F., Asymptotic Methods in the Theory of Singular Perturbations, Vysshaja Shkola, Moscow, 1990, 208 pp. (Russian) | MR | Zbl
[10] Arnol'd, V. I., Catastrophe Theory, 3rd ed., Springer, Berlin, 1992, xiv+150 pp. | MR | Zbl
[11] Arnol'd, V. I., Afraimovich, V. S., Ilyashenko, Yu. S., and Shilnikov, L. P., “Bifurcation Theory”, Dynamical Systems 5, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 5, VINITI, Moscow, 1986, 5–218 (Russian) | MR
[12] Berglund, N., “Dynamic Bifurcations: Hysteresis, Scaling Laws and Feedback Control”, Theor. Phys. Suppl., 139 (2000), 325–336 | DOI | MR
[13] Kiselev, O. M., “Hard Loss of Stability in Painlevé-2 Equation”, J. Nonlinear Math. Phys., 8:1 (2001), 65–95 | DOI | MR | Zbl
[14] Diminnie, D. C. and Haberman, R., “Slow Passage through Homoclinic Orbits for the Unfolding of a Saddle-Center Bifurcation and the Change in the Adiabatic Invariant”, Phys. D, 162:1–2 (2002), 34–52 | DOI | MR | Zbl
[15] Dokl. Akad. Nauk, 407:4 (2006), 460–462 (Russian) | DOI | MR | Zbl
[16] Kalyakin, L. A., “Asymptotics of the Solution of a Differential Equation in a Saddle-Node Bifurcation”, Comput. Math. Math. Phys., 59:9 (2019), 1454–1469 | DOI | MR | Zbl
[17] Mishchenko, E. F., Kolesov, Yu. S., Kolesov, A. Yu., and Rozov, N. Kh., Periodic Motions and Bifurcation Processes in Singularly Perturbed Systems, 1995, Fizmatlit, Moscow, 336 pp. (Russian) | MR
[18] Lebovitz, N. R. and Schaar, R. J., “Exchange of Stabilities in Autonomous Systems”, Studies in Appl. Math., 54:3 (1975), 229–260 | DOI | MR | Zbl
[19] Lebovitz, N. R. and Schaar, R. J., “Exchange of Stabilities in Autonomous Systems: 2. Vertical Bifurcation”, Studies in Appl. Math., 56:1 (1977), 1–50 | DOI | MR | Zbl
[20] Kalyakin, L. A., “Analysis of a Mathematical Model for Nuclear Spins in an Antiferromagnet”, Russian J. Nonlinear Dyn., 14:2 (2018), 217–234 | MR | Zbl
[21] Murdock, J. A., Perturbations: Theory and Methods, Wiley-Intersci. Publ. Classics Appl. Math., 27, Wiley, New York, 1991, 509 pp. | MR
[22] Orlov, V. N., “Criterion for the Existence of Moving Singular Points of Solutions to Riccati Differential Equations”, Vestn. Samar. Gos. Univ. Estestv. Ser., 2006, no. 6/1(46), 64-69 (Russian) | MR | Zbl
[23] Funktsional. Anal. i Prilozhen., 23:4 (1989), 63–74 (Russian) | DOI | MR | Zbl
[24] Kozlov, V. V. and Furta, S. D., Asymptotic Solutions of Strongly Nonlinear Systems of Differential Equations, Springer Monogr. Math., Springer, Heidelberg, 2013, 262 pp. | DOI | MR | Zbl