Asymptotics of Dynamical Saddle-node Bifurcations
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 119-135

Voir la notice de l'article provenant de la source Math-Net.Ru

Dynamical bifurcations occur in one-parameter families of dynamical systems, when the parameter is slow time. In this paper we consider a system of two nonlinear differential equations with slowly varying right-hand sides. We study the dynamical saddle-node bifurcations that occur at a critical instant. In a neighborhood of this instant the solution has a narrow transition layer, which looks like a smooth jump from one equilibrium to another. The main result is asymptotics for a solution with respect to the small parameter in the transition layer. The asymptotics is constructed by the matching method with three time scales. The matching of the asymptotics allows us to find the delay of the loss of stability near the critical instant.
Keywords: nonlinear equation, small parameter, asymptotics, equilibrium
Mots-clés : dynamical bifurcation.
@article{ND_2022_18_1_a6,
     author = {L. A. Kalyakin},
     title = {Asymptotics of {Dynamical} {Saddle-node} {Bifurcations}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {119--135},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_1_a6/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Asymptotics of Dynamical Saddle-node Bifurcations
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 119
EP  - 135
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_1_a6/
LA  - en
ID  - ND_2022_18_1_a6
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Asymptotics of Dynamical Saddle-node Bifurcations
%J Russian journal of nonlinear dynamics
%D 2022
%P 119-135
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_1_a6/
%G en
%F ND_2022_18_1_a6
L. A. Kalyakin. Asymptotics of Dynamical Saddle-node Bifurcations. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 119-135. http://geodesic.mathdoc.fr/item/ND_2022_18_1_a6/