Asymptotics of Dynamical Saddle-node Bifurcations
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 119-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

Dynamical bifurcations occur in one-parameter families of dynamical systems, when the parameter is slow time. In this paper we consider a system of two nonlinear differential equations with slowly varying right-hand sides. We study the dynamical saddle-node bifurcations that occur at a critical instant. In a neighborhood of this instant the solution has a narrow transition layer, which looks like a smooth jump from one equilibrium to another. The main result is asymptotics for a solution with respect to the small parameter in the transition layer. The asymptotics is constructed by the matching method with three time scales. The matching of the asymptotics allows us to find the delay of the loss of stability near the critical instant.
Keywords: nonlinear equation, small parameter, asymptotics, equilibrium
Mots-clés : dynamical bifurcation.
@article{ND_2022_18_1_a6,
     author = {L. A. Kalyakin},
     title = {Asymptotics of {Dynamical} {Saddle-node} {Bifurcations}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {119--135},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_1_a6/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Asymptotics of Dynamical Saddle-node Bifurcations
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 119
EP  - 135
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_1_a6/
LA  - en
ID  - ND_2022_18_1_a6
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Asymptotics of Dynamical Saddle-node Bifurcations
%J Russian journal of nonlinear dynamics
%D 2022
%P 119-135
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_1_a6/
%G en
%F ND_2022_18_1_a6
L. A. Kalyakin. Asymptotics of Dynamical Saddle-node Bifurcations. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 119-135. http://geodesic.mathdoc.fr/item/ND_2022_18_1_a6/

[1] Bautin, N. N. and Leontovich, E. A., Methods and Techniques for Qualitative Research of Dynamic Systems on the Plane, 2nd ed., Nauka, Moscow, 1990, 486 pp. (Russian) | MR

[2] Kuznetsov, A. P., Dynamical Systems and Bifurcations, Nauka, Saratov, 2015, 168 pp. (Russian)

[3] Tr. Inst. Mat. i Mekh. UrO RAN, 13:2 (2007), 104–119 (Russian) | DOI | Zbl

[4] Kalyakin, L. A., “Asymptotics of the Solution for the System of Landau – Lifsitz Equations under Saddle–Node Dynamical Bifurcation”, Algebra i Analiz, 33:2 (2021), 56–81 (Russian) | MR

[5] Il'in, A. M., Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, v. 102, Transl. Math. Monogr., AMS, Providence, R.I., 1992, x+281 pp. | DOI | MR

[6] Differ. Uravn., 23:12 (1987), 2060–2067 (Russian) | MR | Zbl

[7] Differ. Uravn., 24:2 (1988), 226–233 (Russian) | MR | Zbl

[8] Baer, S. M., Erneux, T., and. Rinzel, J., “The Slow Passage through a Hopf Bifurcation: Delay, Memory Effects, and Resonance”, SIAM J. Appl. Math., 49:1 (1989), 55–71 | DOI | MR | Zbl

[9] Vasileva, A. B. and Butuzov, V. F., Asymptotic Methods in the Theory of Singular Perturbations, Vysshaja Shkola, Moscow, 1990, 208 pp. (Russian) | MR | Zbl

[10] Arnol'd, V. I., Catastrophe Theory, 3rd ed., Springer, Berlin, 1992, xiv+150 pp. | MR | Zbl

[11] Arnol'd, V. I., Afraimovich, V. S., Ilyashenko, Yu. S., and Shilnikov, L. P., “Bifurcation Theory”, Dynamical Systems 5, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 5, VINITI, Moscow, 1986, 5–218 (Russian) | MR

[12] Berglund, N., “Dynamic Bifurcations: Hysteresis, Scaling Laws and Feedback Control”, Theor. Phys. Suppl., 139 (2000), 325–336 | DOI | MR

[13] Kiselev, O. M., “Hard Loss of Stability in Painlevé-2 Equation”, J. Nonlinear Math. Phys., 8:1 (2001), 65–95 | DOI | MR | Zbl

[14] Diminnie, D. C. and Haberman, R., “Slow Passage through Homoclinic Orbits for the Unfolding of a Saddle-Center Bifurcation and the Change in the Adiabatic Invariant”, Phys. D, 162:1–2 (2002), 34–52 | DOI | MR | Zbl

[15] Dokl. Akad. Nauk, 407:4 (2006), 460–462 (Russian) | DOI | MR | Zbl

[16] Kalyakin, L. A., “Asymptotics of the Solution of a Differential Equation in a Saddle-Node Bifurcation”, Comput. Math. Math. Phys., 59:9 (2019), 1454–1469 | DOI | MR | Zbl

[17] Mishchenko, E. F., Kolesov, Yu. S., Kolesov, A. Yu., and Rozov, N. Kh., Periodic Motions and Bifurcation Processes in Singularly Perturbed Systems, 1995, Fizmatlit, Moscow, 336 pp. (Russian) | MR

[18] Lebovitz, N. R. and Schaar, R. J., “Exchange of Stabilities in Autonomous Systems”, Studies in Appl. Math., 54:3 (1975), 229–260 | DOI | MR | Zbl

[19] Lebovitz, N. R. and Schaar, R. J., “Exchange of Stabilities in Autonomous Systems: 2. Vertical Bifurcation”, Studies in Appl. Math., 56:1 (1977), 1–50 | DOI | MR | Zbl

[20] Kalyakin, L. A., “Analysis of a Mathematical Model for Nuclear Spins in an Antiferromagnet”, Russian J. Nonlinear Dyn., 14:2 (2018), 217–234 | MR | Zbl

[21] Murdock, J. A., Perturbations: Theory and Methods, Wiley-Intersci. Publ. Classics Appl. Math., 27, Wiley, New York, 1991, 509 pp. | MR

[22] Orlov, V. N., “Criterion for the Existence of Moving Singular Points of Solutions to Riccati Differential Equations”, Vestn. Samar. Gos. Univ. Estestv. Ser., 2006, no. 6/1(46), 64-69 (Russian) | MR | Zbl

[23] Funktsional. Anal. i Prilozhen., 23:4 (1989), 63–74 (Russian) | DOI | MR | Zbl

[24] Kozlov, V. V. and Furta, S. D., Asymptotic Solutions of Strongly Nonlinear Systems of Differential Equations, Springer Monogr. Math., Springer, Heidelberg, 2013, 262 pp. | DOI | MR | Zbl