Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_1_a4, author = {I. A. C. Melnik}, title = {The {Elliptic} {Integral} {Machine:}}, journal = {Russian journal of nonlinear dynamics}, pages = {83--102}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_1_a4/} }
I. A. C. Melnik. The Elliptic Integral Machine:. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 83-102. http://geodesic.mathdoc.fr/item/ND_2022_18_1_a4/
[1] Zuse, K., Rechnender Raum, Vieweg, Braunschweig, 1969, 84 pp. | Zbl
[2] Sauder, J., Hilgemann, E., Johnson, M., Parness, A., Bienstock, B., Hall, J., Kawata, J., and Stack, K., “Automaton Rover for Extreme Environments”, Technical Report, 2017, California Institute of Technology, California, 44 pp.
[3] Fredkin, E. and Toffoli, T., “Conservative Logic”, Int. J. Theor. Phys., 21:3–4 (1982), 219–253 | DOI | MR | Zbl
[4] Beggs, E. J. and Tucker, J. V., “Embedding Infinitely Parallel Computation in Newtonian Kinematics”, Appl. Math. Comput., 178:1 (2006), 25–43 | MR | Zbl
[5] Jakubowski, M. J., “Computing with Solitons in Bulk Media”, PhD Thesis, Princeton Univ., Princeton, N.J.\, 1999, 158 pp.
[6] Rozenberg, G., Bäck, Th., and Kok, J. N., Handbook of Natural Computing, Springer, Berlin, 2012, LII, 2052 pp. | MR | Zbl
[7] Toffoli, T. and Margolus, N., Cellular Automata Machines: A New Environment for Modeling, MIT Press, Cambridge, 1987, 276 pp.
[8] Richard, K. S. and Steiglitz, K., “Programmable Parallel Arithmetic in Cellular Automata Using a Particle Model”, Complex Syst., 8:5 (1994), 311–323 | MR | Zbl
[9] Beggs, E. J. and Tucker, J. V., “Experimental Computation of Real Numbers by Newtonian Machines”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2082 (2007), 1541–1561 | MR | Zbl
[10] Beggs, E. J. and Tucker, J. V., “Can Newtonian Systems, Bounded in Space, Time, Mass and Energy Compute All Functions?”, Theoret. Comput. Sci., 371:1–2 (2007), 4–19 | DOI | MR | Zbl
[11] Collision-Based Computing, ed. A. Adamatzky, Springer, London, 2002, xxviii+549 pp. | MR | Zbl
[12] Galperin, G. A., “Playing Pool with $\pi$ (the Number $\pi$ from a Billiard Point of View)”, Regul. Chaotic Dyn., 8:4 (2003), 375–394 | DOI | MR | Zbl
[13] Ganguly, N., Sikdar, B. K., Deutsch, A., Canright, G., and Chaudhuri, P. A., Survey on Cellular Automata, Technical Report No. 9, Centre for High Performance Computing, Dresden University of Technology, 2003, 30 pp.
[14] Smith, M. A., “Cellular Automata Methods in Mathematical Physics”, PhD Thesis, 1994, Mass., MIT, Cambridge, 243 pp. | MR
[15] Wolfram, S., “Universality and Complexity in Cellular Automata”, Phys. D, 10:1–2 (1984), 1–35 | DOI | MR | Zbl
[16] Dascalu, M., “Cellular Automata Hardware Implementations: An Overview”, Rom. J. Inf. Sci. Technol., 19:4 (2016), 360–368
[17] Toffoli, T., “Cellular Automata As an Alternative to (Rather Than an Approximation of) Differential Equations in Modeling Physics”, Phys. D, 10:1–2 (1984), 117–127 | DOI | MR | Zbl
[18] Margolus, N., “Physics-Like Models of Computation”, Phys. D, 10:1–2 (1984), 81–95 | DOI | MR | Zbl
[19] Fredkin, E., “An Introduction to Digital Philosophy”, Internat. J. Theoret. Phys., 42:2 (2003), 189–247 | DOI | MR | Zbl
[20] Toffoli, T., “CAM: A High-Performance Cellular-Automaton”, Phys. D, 10:1–2 (1984), 195–204 | DOI | MR
[21] Byrd, P. F. and Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Scientists, Grundlehren Math. Wiss., 67, 2nd ed., rev., Springer, New York, 1971, xvi+358 pp. | MR | Zbl
[22] Hancock, H., Elliptic Integrals, Dover, New York, 1958, 104 pp. | MR | Zbl
[23] Borwein, J. M. and Borwein, P. B., Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Wiley, New York, 1987, xvi+414 pp. | MR | Zbl
[24] Salamin, E., “Computation of $\pi$ Using Arithmetic-Geometric Mean”, Math. Comp., 30:135 (1976), 565–570 | MR | Zbl
[25] Brent, J. M., “Fast Multiple-Precision Evaluation of Elementary Functions”, J. Assoc. Comput. Mach., 23:2 (1976), 242–251 | DOI | MR | Zbl
[26] Chernov, N. and Markarian, R., Chaotic Billiards, Math. Surv. Monogr., 127, AMS, Providence, R.I., 2006, xii+316 pp. | DOI | MR | Zbl
[27] Bellman, R., A Brief Introduction to Theta Functions, Holt, Rinehart Winston, New York, 1961, x+78 pp. | MR | Zbl
[28] Thornton, S. T. and Marion, J. B., Classical Dynamics of Particles and Systems, 5th ed, Brooks/Cole, Pacific Grove, Calif., 2004, 656 pp.
[29] Aretxabaleta, X. M., Gonchenko, M., Harshman, N. L., Jackson, S. G., Olshanii, M., and Astrakharchik, G. E., “The Dynamics of Digits: Calculating Pi with Galperin's Billiards”, Mathematics, 8:4 (2020), 509, 32 pp. | DOI
[30] Zhang, L., “Computing Naturally in the Billiard Ball Model”, UC'09: Proc. of the 8th Internat. Conf. on Unconventional Computation (Ponta Delgada, Portugal, Sept 2009), Springer, Berlin, 2009, 277–286 | DOI | MR | Zbl
[31] Berger, B., Geometry Revealed: A Jacob's Ladder to Modern Higher Geometry, Springer, Berlin, 2010, 831 pp. | MR
[32] Chang, S.-J. and Friedberg, R., “Elliptical Billiards and Poncelet's Theorem”, J. Math. Phys., 29:7 (1988), 1537–1550 | DOI | MR | Zbl
[33] Fredkin, E., “Digital Mechanics: An Informational Process Based on Reversible Universal Cellular Automata”, Phys. D, 45:1–3 (1990), 254–270 | DOI | MR | Zbl