The Mechanism of the Fault Genesis and
Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 43-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the study of the patterns of the behavior of coupling elements in the OFC model, which describes the statistical regularities of the seismic regime. It is shown that there are two different modes of synchronous drop formation, simulating an earthquake. Both mechanisms are determined by the capture of a neighboring element and the subsequent synchronization of the drops. This process forms a stable drop of a larger size. The first mechanism is typical for the initial stage of the system’s evolution toward a steady self-organized critical state. In this case, the capture is determined by different rates of input of energy into the elements in near-boundary regions of the lattice. The second mechanism is based on an increase in the number of cluster boundary elements and, accordingly, an increase in the probability of capture and synchronization of neighboring external elements. The theoretical values of the parameter of the cluster size growth rate presented in this work are in good agreement with the calculated values.
Keywords: Olami – Feder –Christensen model, self-organized criticality, power-law distribution in critical systems.
@article{ND_2022_18_1_a2,
     author = {A. S. Cherepantsev},
     title = {The {Mechanism} of the {Fault} {Genesis} and},
     journal = {Russian journal of nonlinear dynamics},
     pages = {43--59},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2022_18_1_a2/}
}
TY  - JOUR
AU  - A. S. Cherepantsev
TI  - The Mechanism of the Fault Genesis and
JO  - Russian journal of nonlinear dynamics
PY  - 2022
SP  - 43
EP  - 59
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2022_18_1_a2/
LA  - en
ID  - ND_2022_18_1_a2
ER  - 
%0 Journal Article
%A A. S. Cherepantsev
%T The Mechanism of the Fault Genesis and
%J Russian journal of nonlinear dynamics
%D 2022
%P 43-59
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2022_18_1_a2/
%G en
%F ND_2022_18_1_a2
A. S. Cherepantsev. The Mechanism of the Fault Genesis and. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 43-59. http://geodesic.mathdoc.fr/item/ND_2022_18_1_a2/

[1] Olami, Z., Feder, H. S., and Christensen, K., “Self-Organized Criticality in a Continuous, Nonconservative Cellular Automaton Modeling Earthquakes”, Phys. Rev. Lett., 68:8 (1992), 1244–1247 | DOI

[2] Lise, S. and Paczuski, M., “Scaling in a Nonconservative Earthquake Model of Self-Organized Criticality”, Phys. Rev. E, 64:4 (2001), 046111, 5 pp. | DOI

[3] Carvalho, J. X. and Prado, C. P. C., “Self-Organized Criticality in the Olami – Feder – Christensen Model”, Phys. Rev. Lett., 84:17 (2000), 4006–4009 | DOI

[4] Drossel, B., “Complex Scaling Behavior of Nonconserved Self-Organized Critical Systems”, Phys. Rev. Lett., 89:23 (2002), 238701, 4 pp. | DOI

[5] Burridge, R. and Knopoff, L., “Model and Theoretical Seismicity”, Bull. Seism. Soc. Am., 57:3 (1967), 341–371 | DOI

[6] Reid, H. F., “The Mechanics of the Earthquake”, California Earthquake of April 18, 1906: Report of the State Earthquake Investigation Commission, v. 2, Carnegie Inst., Washington, 1910, 206 pp.

[7] Bullen, K. E., “On Strain Energy in the Earth's Upper Mantle”, Trans. Am. Geophys. Union, 34:1 (1953), 107–109 | DOI

[8] Kostrov, B. V. and Das, S., Principles of Earthquake Source Mechanics, Cambridge Univ. Press, New York, 1989, 286 pp. | Zbl

[9] McGarr, A., “On Relating Apparent Stress to the Stress Cauising Earthquake Fault Sleep”, J. Geophys. Res. Solid Earth, 104:B2 (1999), 3003–3011 | DOI

[10] Fisher, M. E., “The Theory of Equilibrium Critical Phenomena”, Rep. Progr. Phys., 30:2 (1967), 615–730 | DOI

[11] Stanley, H. E., Introduction to Phase Transitions and Critical Phenomena, Oxford Univ. Press, New York, 1971, 336 pp.

[12] Kosobokov, V. G. and Mazhkenov, S. A., “On Similarity in the Spatial Distribution of Seismicity”, Computational Seismology and Geodynamics, v. 1, eds. D. K. Chowdhury, N. N. Biswas, A. T. Hsui, et al., Am. Geophys. Union, Washington, 1994, 6–15

[13] Brace, W. F. and Byerlee, J. D., “Stick-Slip As a Mechanism for Earthquakes”, Science, 153:3739 (1966), 990–992 | DOI

[14] Lomnitz-Adler, J., “Automaton Models of Seismic Fracture: Constraints Imposed by the Magnitude-Frequency Relation”, J. Geophys. Res., 98:B10 (1999), 17745–17756

[15] Cherepantsev, A. S., “Effect of Filtering in Dynamic System Parameters Estimation”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 20:6 (2012), 48–55 (Russian)

[16] Bramwell, S. T., Christensen, K., Fortin, J.-Y., Holdsworth, P. C. W., Jensen, H. J., Lise, S., López, J. M., Nicodemi, M., Pinton, J.-F., and Sellitto, M., “Universal Fluctuations in Correlated Systems”, Phys. Rev. Lett., 84:17 (2000), 3744–3747 | DOI

[17] Bak, P., How Nature Works: The Science of Self-Organised Criticality, Springer, New York, 1996, xiii+212 pp. | MR

[18] Sornette, D., Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, 2nd ed., Springer, Berlin, 2006, XXII, 528 pp. | MR | Zbl

[19] Turcotte, D., Fractals and Chaos in Geology and Geophysics, 2nd ed., Cambridge Univ. Press, New York, 1997, 416 pp. | MR

[20] Binney, J., Dowrick, N., Fisher, A., and Newman, M., The Theory of Critical Phenomena: An Introduction to the Renormalization Group, Clarendon, Oxford, 1992, 480 pp. | MR | Zbl

[21] Bak, P. and Tang, C., “Earthquakes As a Phenomenon of Self-Organised Criticality”, J. Geophys. Res., 94:B11 (1989), 15635–156637 | DOI

[22] Geller, R., Jackson, D., Kagan, Y., and Mulargia, F., “Earthquakes Cannot Be Predicted”, Science, 275:5306 (1997), 1616–1617 | DOI

[23] Wissel, F. and Drossel, B., “Transient and Stationary Behavior of the Olami – Feder – Christensen Model”, Phys. Rev. E, 74:6 (2006), 066109, 9 pp. | DOI

[24] Grassberger, P., “Efficient Large-Scale Simulations of a Uniformly Driven System”, Phys. Rev. E, 49:3 (1994), 2436–2444 | DOI | MR

[25] Middleton, A. A. and Tang, Ch., “Self-Organized Criticality in Nonconserved Systems”, Phys. Rev. Lett., 74:5 (1995), 742–745 | DOI

[26] Bottani, S. and Delamotte, B., “Self-Organized-Criticality and Synchronization in Pulse Coupled Relaxation Oscillator Systems the Olami, Feder and Christensen and the Feder and Feder Model”, Phys. D, 103:1–4 (1997), 430–441 | DOI

[27] Lise, S., “Self-Organisation to Criticality in a System without Conservation Law”, J. Phys. A, 35:22 (2002), 4641–4649 | DOI | MR | Zbl

[28] Lise, S. and Paczuski, M., “Self-Organized Criticality and Universality in a Nonconservative Earthquake Model”, Phys. Rev. E, 63:3 (2001), 036111, 5 pp. | DOI

[29] Cherepantsev, A. S., “Characteristics and Property of Dynamic System in the Dissipative Olami – Feder – Christensen Earthquake Model”, Fiz. Mezomekh., 18:6 (2015), 86–97

[30] Peixoto, T. P. and Prado, C. P. C., “Statistics of Epicenters in the Olami – Feder – Christensen Model in Two and Three Dimensions”, Phys. A, 342:1 (2004), 171–177 | DOI

[31] Wissel, F. and Drossel, B., “The Olami – Feder – Christensen Earthquake Model in One Dimension”, New J. Phys., 7:1 (2005), 5, 19 pp. | DOI

[32] Cherepantsev, A. S., “Time Variations in the Parameters of Dynamic Systems of Geodeformation Processes”, Izv., Phys. Solid Earth, 55:3 (2019), 420–438 | DOI

[33] Jánosi, I. and Kertész, J., “Self-Organized Criticality with and without Conservation”, Phys. A, 200 (1993), 179–188 | DOI | MR

[34] Mousseau, N., “Synchronization by Disorder in Coupled Systems”, Phys. Rev. Lett., 77:5 (1996), 968–971 | DOI

[35] Stavrogin, A. N. and Protosenya, A. G., Mechanics of Deformation and Destruction of Rocks, Nedra, Moscow, 1992, 224 pp. (Russian)