Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2022_18_1_a1, author = {C. C. Lim}, title = {The {Super-} and {Sub-Rotation} of {Barotropic}}, journal = {Russian journal of nonlinear dynamics}, pages = {19--42}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2022_18_1_a1/} }
C. C. Lim. The Super- and Sub-Rotation of Barotropic. Russian journal of nonlinear dynamics, Tome 18 (2022) no. 1, pp. 19-42. http://geodesic.mathdoc.fr/item/ND_2022_18_1_a1/
[1] Schubert, G., Bougher, S. W., Covey, C. C., Del Genio, A. D., Grossman, A. S., Hollingsworth, J. L., Limaye, S. S., and Young, R. E., “Venus Atmosphere Dynamics: A Continuing Enigma”, Exploring Venus As a Terrestrial Planet, eds. L. Esposito, E. Stofan, T. Cravens, AGU, Washington, D.C., 2007, 101–120 | DOI
[2] “Wind or Rain or Cold of Titan's Night?”, Astrobiology Mag., 2005, no. March 11
[3] “On the Atmospheres of Exo-Solar Planets”, Sci. Am., 2013, no. July 08
[4] Lynden-Bell, D., “Statistical Mechanics of Violent Relaxation in Stellar Systems”, Mon. Not. R. Astron. Soc., 136 (1967), 101–121 | DOI
[5] Frederiksen, J. S. and Sawford, B. L., “Statistical Dynamics of Two-Dimensional Inviscid Flow on a Sphere”, J. Atmos. Sci., 37:4 (1980), 717–732 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[6] Cho, J. Y.-K. and Polvani, L. M., “The Emergence of Jets and Vortices in Freely Evolving, Shallow-Water Turbulence on a Sphere”, Phys. Fluids, 8:6 (1996), 1531–1552 | DOI | Zbl
[7] Yoden, S. and Yamada, M., “A Numerical Experiment on Two-Dimensional Decaying Turbulence on a Rotating Sphere”, J. Atmos. Sci., 50:4 (1993), 631–644 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[8] Kim, D. and Thompson, C. J., “Critical Behaviour of a Modified Spherical Model”, J. Phys. A, 10:7 (1977), 1167–1174 | DOI | MR
[9] Naso, A., Chavanis, P. H., and Dubrulle, B., “Statistical Mechanics of Two-Dimensional Euler Flows and Minimum Enstrophy States”, Eur. Phys. J. B, 77:2 (2010), 187–212 | DOI | MR
[10] Herbert, C., Dubrulle, B., Chavanis, P. H., and Paillard, D., “Phase Transitions and Marginal Ensemble Equivalence for Freely Evolving Flows on a Rotating Sphere”, Phys. Rev. E, 85:5 (2012), 056304, 7 pp. | DOI
[11] Herbert, C., Dubrulle, B., Chavanis, P.-H., and Paillard, D., “Statistical Mechanics of Quasi-Geostrophic Flows on a Rotating Sphere”, J. Stat. Mech.: Theory Exp., 2012:5 (2012), P05023, 48 pp. | DOI
[12] Chavanis, P. H., “Dynamical and Thermodynamical Stability of Two-Dimensional Flows: Variational Principles and Relaxation Equations”, Eur. Phys. J. B, 70:1 (2009), 73–105 | DOI | MR | Zbl
[13] Kraichnan, R. H., “Statistical Dynamics of Two-Dimensional Flows”, J. Fluid Mech., 67:1 (1975), 155–175 | DOI | MR | Zbl
[14] Lim, C. C., “Energy Maximizers, Negative Temperatures, and Robust Symmetry Breaking in Vortex Dynamics on a Nonrotating Sphere”, SIAM J. Appl. Math., 65:6 (2005), 2093–2106 | DOI | MR | Zbl
[15] Lim, C. C., “Energy Extremals and Nonlinear Stability in a Variational Theory of a Coupled Barotropic Flow: Rotating Solid Sphere System”, J. Math. Phys., 48:6 (2007), 065603, 30 pp. | DOI | MR | Zbl
[16] Lim, C. C. and Shi, J., “The Role of Higher Vorticity Moments in a Variational Formulation of Barotropic Flows on a Rotating Sphere”, Discrete Contin. Dyn. Syst. Ser. B, 11:3 (2009), 717–740 | MR | Zbl
[17] Lim, C. C., “Phase Transition to Super-Rotating Atmospheres in a Simple Planetary Model for a Nonrotating Massive Planet: Exact Solution”, Phys. Rev. E, 86:6 (2012), 066304, 9 pp. | DOI
[18] Ding, X. and Lim, C. C., “Phase Transitions of the Energy-Relative Enstrophy Theory for a Coupled Barotropic Fluid-Rotating Sphere System”, Phys. A, 374:1 (2007), 152–164 | DOI | MR
[19] Lim, C. C. and Mavi, R. S., “Phase Transitions of Barotropic Flow Coupled to a Massive Rotating Sphere: Derivation of a Fixed Point Equation by the Bragg Method”, Phys. A, 380 (2007), 43–60 | DOI
[20] Lim, C. C. and Nebus, J., “The Spherical Model of Logarithmic Potentials As Examined by Monte Carlo Methods”, Phys. Fluids, 16:10 (2004), 4020–4027 | DOI | MR
[21] Leith, C., “Minimum Enstrophy Vortices”, Phys. Fluids, 27 (1984), 1388–1395 | DOI | MR | Zbl
[22] Onsager, L., “Statistical Hydrodynamics”, Nuovo Cim., 6 (1949), 279–287 | DOI | MR
[23] Berlin, T. H. and Kac, M., “The Spherical Model of a Ferromagnet”, Phys. Rev. (2), 86 (1952), 821–835 | DOI | MR | Zbl
[24] Carnevale, G. F. and Frederiksen, J. S., “Nonlinear Stability and Statistical Mechanics of Flow over Topography”, J. Fluid Mech., 175 (1987), 157–181 | DOI | Zbl
[25] Lim, C. C., Ding, X., and Nebus, J., Vortex Dynamics, Statistical Mechanics, And Planetary Atmospheres, World Sci., Singapore, 2009, 224 pp. | MR | Zbl
[26] Miller, J., “Statistical Mechanics of Euler Equations in Two Dimensions”, Phys. Rev. Lett., 65:17 (1990), 2137–2140 | DOI | MR | Zbl
[27] Robert, R. and Sommeria, J., “Statistical Equilibrium States for Two-Dimensional Flows”, J. Fluid Mech., 229 (1991), 291–310 | DOI | MR | Zbl
[28] Sommeria, J., “Experimental Study of the 2D Inverse Energy Cascade in a Square Box”, J. Fluid Mech., 170 (1986), 139–168 | DOI
[29] van Heijst, G. J. F., Clercx, H. J. H., and Molenaar, D., “The Effects of Solid Boundaries on Confined 2D Turbulence”, J. Fluid Mech., 554 (2006), 411–431 | DOI | MR | Zbl
[30] Lim, C. C. and Assad, S. M., “Self Containment Radius for Rotating Planar Flows, Single-Signed Vortex Gas and Electron Plasma”, Regul. Chaotic Dyn., 10:3 (2005), 239–255 | DOI | MR | Zbl
[31] Lundgren, T. S. and Pointin, Y. B., “Statistical Mechanics of Two-Dimensional Vortices”, J. Stat. Phys., 17:5 (1977), 323–355 | DOI
[32] Majda, A. and Wang, X., Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows, Cambridge Univ. Press, Cambridge, 2006, 564 pp. | MR | Zbl
[33] Touchette, H., Ellis, R. S., and Turkington, B., “An Introduction to the Thermodynamic and Macrostate Levels of Nonequivalent Ensembles: News and Expectations in Thermostatistics”, Phys. A, 340:1–3 (2004), 138–146 | DOI | MR
[34] Bouchet, F., “Simpler Variational Problems for Statistical Equilibria of the 2D Euler Equation and Other Systems with Long Range Interactions”, Phys. D, 237:14–17 (2008), 1976–1981 | DOI | MR | Zbl
[35] Bouchet, F. and Venaille, A., “Statistical Mechanics of Two-Dimensional and Geophysical Flows”, Phys. Rep., 515:5 (2012), 227–295 | DOI | MR
[36] Venaille, A. and Bouchet, F., “Solvable Phase Diagrams and Ensemble Inequivalence for Two-Dimensional and Geophysical Turbulent Flows”, J. Stat. Phys., 143:2 (2011), 346–380 | DOI | MR | Zbl
[37] Marston, J. B., “Planetary Atmospheres As Non-Equilibrium Condensed Matter”, Annu. Rev. Condens. Matter Phys., 3 (2012), 285–310 | DOI
[38] Qi, W. and Marston, J. B., “Hyperviscosity and Statistical Equilibria of Euler Turbulence on the Torus and the Sphere”, J. Stat. Mech.: Theory Exp., 2014:7 (2014), P07020. pp. | MR
[39] Ding, X. and Lim, C. C., “First-Order Phase Transition and High Energy Cyclonic Spots in a Shallow Water Model on a Rapidly Rotating Sphere”, Phys. Fluids, 21:4 (2009), 045102, 13 pp. | DOI | Zbl