Modelling the Effect of Virulent Variants with SIR
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 475-490.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the effect of an emerging virus mutation on the evolution of an epidemic, inspired by the appearance of the delta variant of SARS-CoV-2. We show that if the new variant is markedly more infective than the existing ones the epidemic can resurge immediately. The vaccination of the population plays a crucial role in the evolution of the epidemic. When the older (and more vulnerable) layers of the population are protected, the new infections concern mainly younger people, resulting in fewer hospitalisations and a reduced stress on the health system. We study also the effects of vacations, partially effective vaccines and vaccination strategies based on epidemic-awareness. An important finding concerns vaccination deniers: their attitude may lead to a prolonged wave of epidemic and an increased number of hospital admissions.
Keywords: epidemic, seasonality, recruitment, SIR model.
Mots-clés : vaccination
@article{ND_2021_17_4_a8,
     author = {G. Nakamura and S. Plaszczynski and B. Grammaticos and M. Badoual},
     title = {Modelling the {Effect} of {Virulent} {Variants} with {SIR}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {475--490},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_4_a8/}
}
TY  - JOUR
AU  - G. Nakamura
AU  - S. Plaszczynski
AU  - B. Grammaticos
AU  - M. Badoual
TI  - Modelling the Effect of Virulent Variants with SIR
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 475
EP  - 490
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_4_a8/
LA  - en
ID  - ND_2021_17_4_a8
ER  - 
%0 Journal Article
%A G. Nakamura
%A S. Plaszczynski
%A B. Grammaticos
%A M. Badoual
%T Modelling the Effect of Virulent Variants with SIR
%J Russian journal of nonlinear dynamics
%D 2021
%P 475-490
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_4_a8/
%G en
%F ND_2021_17_4_a8
G. Nakamura; S. Plaszczynski; B. Grammaticos; M. Badoual. Modelling the Effect of Virulent Variants with SIR. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 475-490. http://geodesic.mathdoc.fr/item/ND_2021_17_4_a8/

[1] Landau, E., The Hard Lessons of Modeling the Coronavirus Pandemic, , 2021 https://www.quantamagazine.org/the-hard-lessons-of-modeling-the-coronavirus-pandemic-20210128/

[2] Perra, N., “Non-Pharmaceutical Interventions during the COVID-19 Pandemic: A Review”, Phys. Rep., 913 (2021), 1–52 | DOI | MR

[3] Brauner, J. M., Mindermann, S., Sharma, M., Johnston, D., Salvatier, J., Gavenčiak, T., Stephenson, A. B., Leech, G., Altman, G., Mikulik, V., Norman, A. J., Monrad, J. T., Besiroglu, T., Ge, H., Hartwick, M. A., Teh, Y. W., Chindelevitch, L., Gal, Ya., and Kulveit, J., “Inferring the Effectiveness of Government Interventions against COVID-19”, Science, 371:6531 (2021), eabd9338 | DOI

[4] European Centre for Disease Prevention and Control, Guidelines for Non-Pharmaceutical Interventions to Reduce the Impact of COVID-19 in the EU/EEA and the UK, , 2020 https://www.ecdc.europa.eu/en/publications-data/covid-19-guidelines-non-pharmaceutical-interventions | MR

[5] Nakamura, G., Grammaticos, B., and Badoual, M., “Confinement Strategies in a Simple SIR Model”, Regul. Chaotic Dyn., 25:6 (2020), 509–521 | DOI | MR | Zbl

[6] Fokas, A. S., Cuevas-Maraver, J., and Kevrekidis, P. G., “Easing COVID-19 Lockdown Measures While Protecting the Older Restricts the Deaths to the Level of the Full Lockdown”, Sci. Rep., 11 (2021), 5839 | DOI | MR

[7] Li, X., Mukandavire, Ch., Cucunubá, Z. M., Londono, S., Abbas, K., Clapham, H., Jit, M., Johnson, H., Papadopoulos, T., Vynnycky, E., Brisson, M., Carter, E., Clark, A., Villiers, M., Eilertson, K., Ferrari, M., Gamkrelidze, I., Gaythorpe, K., Grassly, N., Hallett, T., Hinsley, W., Jackson, M., Jean, K., Karachaliou Mmath, A., Klepac, P., Lessler, J., Li, X., Sean, H., Moore, S., Nayagam, Sh., Nguyen, D. M., Razavi, H., Razavi-Shearer, D., Resch, S., Sanderson, C., Sweet, S., Sy, S., Tam, Y., Tanvir, H., Tran, Q. M., Trotter, C., Truelove, Sh., van Zandvoort, K., Verguet, S., Walker, N., Winter, A., Woodruff, K., Ferguson, N., and Garske, T., “Estimating the Health Impact of Vaccination against Ten Pathogens in 98 Low-Income and Middle-Income Countries from 2000 to 2030: A Modelling Study”, The Lancet, 397:10272 (2021), 398–408 | DOI

[8] Mahase, E., “Covid-19: Israel Sees New Infections Plummet Following Vaccinations”, BMJ, 372 (2021), n338 | DOI

[9] “zCOVID-19 Vaccine Breakthrough Infections Reported to CDC — United States, January 1 – April 30, 2021”, MMWR Morb. Mortal Wkly Rep., 70:21 (2021), 792–793 | DOI

[10] Nakamura, G., Grammaticos, B., and Badoual, M., “Vaccination Strategies for a Seasonal Epidemic: A Simple SIR Model”, Open Commun. Nonlinear Math. Phys., 1 (2021), 20–40 | DOI

[11] SARS-CoV-2 Variant Classifications and Definitions, , 2021 https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html

[12] Campbell, F., Archer, B., Laurenson-Schafer, H., Jinnai, Y., Konings, F., Batra, N., Pavlin, B., Vandemaele, K., Van Kerkhove, M. D., Jombart, Th., Morgan, O., and le Polain de Waroux, O., “Increased Transmissibility and Global Spread of SARS-CoV-2 Variants of Concern As at June 2021”, Euro Surveill., 26:24 (2021), 2100509 | DOI

[13] Davies, N. G., Abbott, S., Barnard, R. C., Jarvis, C. I., Kucharski, A. J., Munday, J. D., Pearson, C. A. B., Russell, T. W., Tully, D. C., Washburne, A. D., Wenseleers, T., Gimma, A., Waites, W., Wong, K. L. M., van Zandvoort, K., Silverman, J. D., CMMID COVID-19 Working Group, COVID-19 Genomics UK (COG-UK) Consortium, Diaz-Ordaz, K., Keogh, R., Eggo, R. M., Funk, S., Jit, M., Atkins, K. E., and Edmunds, W. J., “Estimated Transmissibility and Impact of SARS-CoV-2 Lineage B.1.1.7 in England”, Science, 372:6538 (2021), eabg3055. | DOI

[14] Ito, K., Piantham, C., and Nishiura, H., “Predicted Dominance of Variant Delta of SARS-CoV-2 before Tokyo Olympic Games, Japan, July 2021”, Euro Surveill., 26:27 (2021), 2100570 | DOI

[15] Sheikh, A., McMenamin, J., Taylor, B., and Robertson, C., “SARS-CoV-2 Delta VOC in Scotland: Demographics, Risk of Hospital Admission, and Vaccine Effectiveness”, The Lancet, 397:10293 (2021), 2461–2462 | DOI

[16] Planas, D., Veyer, D., Baidaliuk, A., Staropoli, I., Guivel-Benhassine, F., Rajah, M. M., Planchais, C., Porrot, F., Robillard, N, Puech, J., Prot, M., Gallais, F., Gantner, P., Velay, A., Le Guen, J., Kassis-Chikhani, N., Edriss, D., Belec, L., Seve, A., Courtellemont, L., Péré, H., Hocqueloux, L., Fafi-Kremer, S., Prazuck, T., Mouquet, H., Bruel, T., Simon-Lorière, E., Rey, F. A., and Schwartz, O., “Reduced Sensitivity of SARS-CoV-2 Variant Delta to Antibody Neutralization”, Nature, 596:7871 (2021), 276–280 | DOI

[17] Kermack, W. O. and McKendrick, A. G., “Contributions to the Mathematical Theory of Epidemics”, Proc. Roy. Soc. Edinburgh Sect. A, 115:772 (1927), 700–721 | Zbl

[18] Li, R., Li, Y., Zou, Zh., Liu, Y., Li, X., Zhuang, G., Shen, M., and Zhang, L., Projecting the Impact of SARS-CoV-2 Variants on the COVID-19 Epidemic and Social Restoration in the United States: A Mathematical Modelling Study, Preprint, , 2021, 13 pp. https://doi.org/10.1101/2021.06.24.21259370

[19] Nakamura, G., Grammaticos, B., and Badoual, M., “Recruitment Effects on the Evolution of Epidemics in a Simple SIR Model”, Regul. Chaotic Dyn., 26:3 (2021), 305–319 | DOI | MR | Zbl

[20] Aleta, A. and Moreno, Y., “Evaluation of the Potential Incidence of COVID-19 and Effectiveness of Containment Measures in Spain: A Data-Driven Approach”, BMC Med., 18 (2020), 157 | DOI

[21] Merow, C. and Urban, M., “Seasonality and Uncertainty in Global COVID-19 Growth Rates”, Proc. Natl. Acad. Sci. USA, 117:44 (2020), 27456–27464 | DOI

[22] Carleton, T., Cornetet, J., Huybers, P., Meng, K., and Proctor, J., “Evidence for Ultraviolet Radiation Decreasing COVID-19 Growth Rates: Global Estimates and Seasonal Implications”, Proc. Natl. Acad. Sci. USA, 118:1 (2021), e2012370118 | DOI | MR

[23] Sajadi, M. M., Habibzadeh, P., Vintzileos, A., Shokouhi, S., Miralles-Wilhelm, F., and Amoroso, A., “Temperature, Humidity, and Latitude Analysis to Estimate Potential Spread and Seasonality of Coronavirus Disease 2019 (COVID-19)”, JAMA Netw. Open, 3:6 (2020), e2011834 | DOI

[24] Watanabe, M., Early Detection of Seasonality and Second-Wave Prediction in the COVID-19 Pandemic, Preprint , 2020 https://doi.org/10.1101/2020.09.02.20187203

[25] Dan, J. M., Mateus, J., Kato, Y., Hastie, K. M., Yu, E. D., Faliti, C. E., Grifoni, A., Ramirez, S. I., Haupt, S., Frazier, A., Nakao, C., Rayaprolu, V., Rawlings, S. A., Peters, B., Krammer, F., Simon, V., Saphire, E. O., Smith, D. M., Weiskopf, D., Sette, A., and Crotty, S., “Immunological Memory to SARS-CoV-2 Assessed for Up to 8 Months after Infection”, Science, 371:6529 (2021), eabf4063 | DOI

[26] Gaebler, C., Wang, Z., Lorenzi, J. C. C., Muecksch, F., Finkin, S., Tokuyama, M., Cho, A., Jankovic, M., Schaefer-Babajew, D., Oliveira, T. Y., Cipolla, M., Viant, C., Barnes, C. O., Bram, Y., Breton, G., Hägglöf, T., Mendoza, P., Hurley, A., Turroja, M., Gordon, K., Millard, K. G., Ramos, V., Schmidt, F., Weisblum, Y., Jha, D., Tankelevich, M., Martinez-Delgado, G., Yee, J., Patel, R., Dizon, J., Unson-O'Brien, C., Shimeliovich, I., Robbiani, D. F., Zhao, Z., Gazumyan, A., Schwartz, R. E., Hatziioannou, T., Bjorkman, P. J., Mehandru, S., Bieniasz, P. D., Caskey, M., and Nussenzweig, M. C., “Evolution of Antibody Immunity to SARS-CoV-2”, Nature, 591:7851 (2021), 639–644 | DOI

[27] Abu-Raddad, L. J., Chemaitelly, H., Butt, A. A., and National Study Group for COVID-19 Vaccination, “Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants”, N. Engl. J. Med., 385:2 (2021), 187–189 | DOI

[28] Shi, W., Tong, C., Zhang, A., Wang, B., Shi, Z., Yao, Y., and Jia, P., “An Extended Weight Kernel Density Estimation Model Forecasts COVID-19 Onset Risk and Identifies Spatiotemporal Variations of Lockdown Effects in China”, Commun. Biol. 2021, 4:1, 126

[29] Saito, M. M., Imoto, S., Yamaguchi, R., Sato, H., Nakada, H., Kami, M., Miyano, S., and Higuchi, T., “Extension and Verification of the SEIR Model on the 2009 Influenza A (H1N1) Pandemic in Japan”, Math. Biosci., 246:1 (2013), 47–54 | DOI | MR | Zbl

[30] Zhao, Y., Wood, D. T., Kojouharov, H. V., Kuang, Y., and Dimitrov, D. T., “Impact of Population Recruitment on the HIV Epidemics and the Effectiveness of HIV Prevention Interventions”, Bull. Math. Biol., 78:10 (2016), 2057–2090 | DOI | MR | Zbl

[31] Grammaticos, B., Willox, R., and Satsuma, J., “Revisiting the Human and Nature Dynamics Model”, Regul. Chaotic Dyn., 25:2 (2020), 178–198 | DOI | MR | Zbl

[32] Mickens, R. E., “Exact Solutions to a Finite-Difference Model of a Nonlinear Reaction-Advection Equation: Implications for Numerical Analysis”, Numer. Methods Partial Differential Equations, 5:4 (1989), 313–325 | DOI | MR | Zbl

[33] Grammaticos, B., Ramani, A., Satsuma, J., and Willox, R., “Discretising the Painlevé Equations à la Hirota – Mickens”, J. Math. Phys., 53:2 (2012), 023506, 24 pp. | DOI | MR | Zbl

[34] Hethcote, H. W., “The Mathematics of Infectious Diseases”, SIAM Rev., 42:4 (2000), 599–653 | DOI | MR | Zbl

[35] Ramani, A., Grammaticos, B., Satsuma, J., and Willox, R., “Discretisation Induced Delays and Their Role in the Dynamics”, J. Phys. A, 41:20 (2008), 205204, 12 pp. | DOI | MR | Zbl

[36] Holling, C. S., A Journey of Discovery, , 2006 https://www.resalliance.org/files/Buzz_Holling_Memoir_2006_a_journey_of_discovery_buzz_holling.pdf

[37] Hotez, P., “COVID Vaccines: Time to Confront Anti-Vax Aggression”, Nature, 592:7856 (2021), 661–661 | DOI

[38] Schwarzinger, M., Watson, V., Arwidson, P., Alla, F., and Luchin, S., “COVID-19 Vaccine Hesitancy in a Representative Working-Age Population in France: A Survey Experiment Based on Vaccine Characteristics”, Lancet Public Health, 6:4 (2021), E210–E221 | DOI