Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_4_a6, author = {B. S. Bardin and E. A. Chekina}, title = {On the {Orbital} {Stability} of {Pendulum-like} {Oscillations}}, journal = {Russian journal of nonlinear dynamics}, pages = {453--464}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_4_a6/} }
B. S. Bardin; E. A. Chekina. On the Orbital Stability of Pendulum-like Oscillations. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 453-464. http://geodesic.mathdoc.fr/item/ND_2021_17_4_a6/
[1] Uspekhi Mat. Nauk, 65:2 (2010), 71–132 (Russian) | DOI | DOI | MR | Zbl
[2] Prikl. Mat. Mekh., 53:6 (1989), 873–879 (Russian) | DOI | MR | Zbl
[3] Irtegov, V. D., “The Stability of the Pendulum-Like Oscillations of a Kovalevskaya Gyroscope”, Tr. Kazan. Aviats. Inst., 97 (1968), 38–40 (Russian)
[4] Yehia, H. M. and El-Hadidy, E. G., “On the Orbital Stability of Pendulum-Like Vibrations of a Rigid Body Carrying a Rotor”, Regul. Chaotic Dyn., 18:5 (2013), 539–552 | DOI | MR | Zbl
[5] Birkhoff, G. D., Dynamical Systems, AMS, Providence, R.I., 1966, 305 pp. | MR | Zbl
[6] Giacaglia, G. E. O., Perturbation Methoda in Non-Linear Systems, Appl. Math. Sci., 8, Springer, New York, 1972, 369 pp. | DOI | MR
[7] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)
[8] Siegel, C. and Moser, J., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., 187, Springer, New York, 1971, xii+290 pp. | DOI | MR | Zbl
[9] Uspekhi Mat. Nauk, 18:6(114) (1963), 91–192 (Russian) | DOI | MR | Zbl
[10] Prikl. Mat. Mekh., 65:1 (2001), 51–58 (Russian) | DOI | MR | Zbl
[11] Bardin, B. S., Rudenko, T. V., and Savin, A. A., “On the Orbital Stability of Planar Periodic Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Cahotic Dyn., 17:6 (2012), 533–546 | DOI | MR | Zbl
[12] Bardin, B. S., “On the Orbital Stability of Pendulum-Like Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Chaotic Dyn., 15:6 (2010), 702–714 | DOI | MR
[13] Bardin, B. S. and Savin, A. A., “On the Orbital Stability of Pendulum-Like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 17:3–4 (2012), 243–257 | DOI | MR | Zbl
[14] Prikl. Mat. Mekh., 77:6 (2013), 806–821 (Russian) | DOI | MR | Zbl
[15] Bardin, B. S., “On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body”, Russian J. Nonlinear Dyn., 16:4 (2020), 581–594 | MR | Zbl
[16] Bardin, B. S., “Local Coordinates in Problem of the Orbital Stability of Pendulum-Like Oscillations of a Heavy Rigid Body in the Bobylev – Steklov Case”, J. Phys. Conf. Ser., 1925 (2021), 012016, 10 pp. | DOI | MR
[17] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, R Dynamics,Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian) | MR
[18] Gradshtein, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th ed., Acad. Press, Amsterdam, 2007, 1200 pp. | MR | Zbl
[19] “3–12”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 39:6 (2004) (Russian)
[20] Prikl. Mat. Mekh., 78:5 (2014), 612–624 (Russian) | DOI | MR | Zbl
[21] Bardin, B. S., Chekina, E. A., and Chekin, A. M., “On the Stability of a Planar Resonant Rotation of a Satellite in an Elliptic Orbit”, Regul. Chaotic Dyn., 20:1 (2015), 63–73 | DOI | MR | Zbl