On the Orbital Stability of Pendulum-like Oscillations
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 453-464

Voir la notice de l'article provenant de la source Math-Net.Ru

The orbital stability of pendulum-like oscillations of a heavy rigid body with a fixed point in the Bobylev – Steklov case is investigated. In particular, a nonlinear study of the orbital stability is performed for the so-called case of degeneracy, where it is necessary to take into account terms of order six in the Hamiltonian expansion in a neighborhood of the unperturbed periodic orbit.
Keywords: rigid body, orbital stability, Hamiltonian system, local coordinates, normal form.
Mots-clés : rotations, oscillations
@article{ND_2021_17_4_a6,
     author = {B. S. Bardin and E. A. Chekina},
     title = {On the {Orbital} {Stability} of {Pendulum-like} {Oscillations}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {453--464},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_4_a6/}
}
TY  - JOUR
AU  - B. S. Bardin
AU  - E. A. Chekina
TI  - On the Orbital Stability of Pendulum-like Oscillations
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 453
EP  - 464
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_4_a6/
LA  - en
ID  - ND_2021_17_4_a6
ER  - 
%0 Journal Article
%A B. S. Bardin
%A E. A. Chekina
%T On the Orbital Stability of Pendulum-like Oscillations
%J Russian journal of nonlinear dynamics
%D 2021
%P 453-464
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_4_a6/
%G en
%F ND_2021_17_4_a6
B. S. Bardin; E. A. Chekina. On the Orbital Stability of Pendulum-like Oscillations. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 453-464. http://geodesic.mathdoc.fr/item/ND_2021_17_4_a6/