On the Orbital Stability of Pendulum-like Oscillations
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 453-464.

Voir la notice de l'article provenant de la source Math-Net.Ru

The orbital stability of pendulum-like oscillations of a heavy rigid body with a fixed point in the Bobylev – Steklov case is investigated. In particular, a nonlinear study of the orbital stability is performed for the so-called case of degeneracy, where it is necessary to take into account terms of order six in the Hamiltonian expansion in a neighborhood of the unperturbed periodic orbit.
Keywords: rigid body, orbital stability, Hamiltonian system, local coordinates, normal form.
Mots-clés : rotations, oscillations
@article{ND_2021_17_4_a6,
     author = {B. S. Bardin and E. A. Chekina},
     title = {On the {Orbital} {Stability} of {Pendulum-like} {Oscillations}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {453--464},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_4_a6/}
}
TY  - JOUR
AU  - B. S. Bardin
AU  - E. A. Chekina
TI  - On the Orbital Stability of Pendulum-like Oscillations
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 453
EP  - 464
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_4_a6/
LA  - en
ID  - ND_2021_17_4_a6
ER  - 
%0 Journal Article
%A B. S. Bardin
%A E. A. Chekina
%T On the Orbital Stability of Pendulum-like Oscillations
%J Russian journal of nonlinear dynamics
%D 2021
%P 453-464
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_4_a6/
%G en
%F ND_2021_17_4_a6
B. S. Bardin; E. A. Chekina. On the Orbital Stability of Pendulum-like Oscillations. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 453-464. http://geodesic.mathdoc.fr/item/ND_2021_17_4_a6/

[1] Uspekhi Mat. Nauk, 65:2 (2010), 71–132 (Russian) | DOI | DOI | MR | Zbl

[2] Prikl. Mat. Mekh., 53:6 (1989), 873–879 (Russian) | DOI | MR | Zbl

[3] Irtegov, V. D., “The Stability of the Pendulum-Like Oscillations of a Kovalevskaya Gyroscope”, Tr. Kazan. Aviats. Inst., 97 (1968), 38–40 (Russian)

[4] Yehia, H. M. and El-Hadidy, E. G., “On the Orbital Stability of Pendulum-Like Vibrations of a Rigid Body Carrying a Rotor”, Regul. Chaotic Dyn., 18:5 (2013), 539–552 | DOI | MR | Zbl

[5] Birkhoff, G. D., Dynamical Systems, AMS, Providence, R.I., 1966, 305 pp. | MR | Zbl

[6] Giacaglia, G. E. O., Perturbation Methoda in Non-Linear Systems, Appl. Math. Sci., 8, Springer, New York, 1972, 369 pp. | DOI | MR

[7] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)

[8] Siegel, C. and Moser, J., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., 187, Springer, New York, 1971, xii+290 pp. | DOI | MR | Zbl

[9] Uspekhi Mat. Nauk, 18:6(114) (1963), 91–192 (Russian) | DOI | MR | Zbl

[10] Prikl. Mat. Mekh., 65:1 (2001), 51–58 (Russian) | DOI | MR | Zbl

[11] Bardin, B. S., Rudenko, T. V., and Savin, A. A., “On the Orbital Stability of Planar Periodic Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Cahotic Dyn., 17:6 (2012), 533–546 | DOI | MR | Zbl

[12] Bardin, B. S., “On the Orbital Stability of Pendulum-Like Motions of a Rigid Body in the Bobylev – Steklov Case”, Regul. Chaotic Dyn., 15:6 (2010), 702–714 | DOI | MR

[13] Bardin, B. S. and Savin, A. A., “On the Orbital Stability of Pendulum-Like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 17:3–4 (2012), 243–257 | DOI | MR | Zbl

[14] Prikl. Mat. Mekh., 77:6 (2013), 806–821 (Russian) | DOI | MR | Zbl

[15] Bardin, B. S., “On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body”, Russian J. Nonlinear Dyn., 16:4 (2020), 581–594 | MR | Zbl

[16] Bardin, B. S., “Local Coordinates in Problem of the Orbital Stability of Pendulum-Like Oscillations of a Heavy Rigid Body in the Bobylev – Steklov Case”, J. Phys. Conf. Ser., 1925 (2021), 012016, 10 pp. | DOI | MR

[17] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, R Dynamics,Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian) | MR

[18] Gradshtein, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th ed., Acad. Press, Amsterdam, 2007, 1200 pp. | MR | Zbl

[19] “3–12”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 39:6 (2004) (Russian)

[20] Prikl. Mat. Mekh., 78:5 (2014), 612–624 (Russian) | DOI | MR | Zbl

[21] Bardin, B. S., Chekina, E. A., and Chekin, A. M., “On the Stability of a Planar Resonant Rotation of a Satellite in an Elliptic Orbit”, Regul. Chaotic Dyn., 20:1 (2015), 63–73 | DOI | MR | Zbl