On the Orbital Stability of Pendulum-like Oscillations
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 453-464
Voir la notice de l'article provenant de la source Math-Net.Ru
The orbital stability of pendulum-like oscillations of a heavy rigid body with a fixed point in
the Bobylev – Steklov case is investigated. In particular, a nonlinear study of the orbital stability
is performed for the so-called case of degeneracy, where it is necessary to take into account terms
of order six in the Hamiltonian expansion in a neighborhood of the unperturbed periodic orbit.
Keywords:
rigid body, orbital stability, Hamiltonian system, local
coordinates, normal form.
Mots-clés : rotations, oscillations
Mots-clés : rotations, oscillations
@article{ND_2021_17_4_a6,
author = {B. S. Bardin and E. A. Chekina},
title = {On the {Orbital} {Stability} of {Pendulum-like} {Oscillations}},
journal = {Russian journal of nonlinear dynamics},
pages = {453--464},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2021_17_4_a6/}
}
B. S. Bardin; E. A. Chekina. On the Orbital Stability of Pendulum-like Oscillations. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 453-464. http://geodesic.mathdoc.fr/item/ND_2021_17_4_a6/