Vibroimpact Mobile Robot
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 429-436.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple model of a capsule robot is studied. The device moves upon a rough horizontal plane and consists of a capsule with an embedded motor and an internal moving mass. The motor generates a harmonic force acting on the bodies. Capsule propulsion is achieved by collisions of the inner body with the right wall of the shell. There is Coulomb friction between the capsule and the support, it prevents a possibility of reversal motion. A periodic motion is constructed such that the robot gains the maximal average velocity.
Keywords: vibroimpact dynamics
Mots-clés : capsule robots, Coulomb friction.
@article{ND_2021_17_4_a4,
     author = {A. P. Ivanov},
     title = {Vibroimpact {Mobile} {Robot}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {429--436},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_4_a4/}
}
TY  - JOUR
AU  - A. P. Ivanov
TI  - Vibroimpact Mobile Robot
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 429
EP  - 436
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_4_a4/
LA  - en
ID  - ND_2021_17_4_a4
ER  - 
%0 Journal Article
%A A. P. Ivanov
%T Vibroimpact Mobile Robot
%J Russian journal of nonlinear dynamics
%D 2021
%P 429-436
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_4_a4/
%G en
%F ND_2021_17_4_a4
A. P. Ivanov. Vibroimpact Mobile Robot. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 429-436. http://geodesic.mathdoc.fr/item/ND_2021_17_4_a4/

[1] Babitsky, V. I., Theory of Vibro-Impact Systems and Applications, Springer, Berlin, 1998, 318 pp. | MR | Zbl

[2] Brogliato, B., Nonsmooth Impact Mechanics: Models, Dynamics and Control, Lect. Notes Control Inf. Sci., 220, Springer, London, 1996, xvi+400 pp. | MR | Zbl

[3] Multibody Dynamics with Unilateral Constraints, eds. F. Pfeiffer, Ch. Glocker, Springer, Vienna, 2000, VI, 262 pp. | MR

[4] Ivanov, A. P., “Impact Oscillations: Linear Theory of Stability and Bifurcations”, J. Sound Vibrations, 178:3 (1994), 361–378 | DOI | MR | Zbl

[5] Sul, O. J., Falvo, M. R., Taylor, R. M. II, Washburn, S., and Superfineb, R., “Thermally Actuated Untethered Impact-Driven Locomotive Microdevices”, Appl. Phys. Lett., 89:20 (2006), 203512, 3 pp. | DOI

[6] Prikl. Mat. Mekh., 66:1 (2002), 3–9 (Russian) | DOI | MR | Zbl

[7] Lichtenheldt, R., Schäfer, B., and Krömer, O., “Hammering Beneath the Surface of Mars: Modeling and Simulation of the Impact-Driven Locomotion of the $HP^3$-Moleby Coupling Enhanced Multi-Body Dynamics and Discrete Element Method”, Proc. of the 58th Internat. Scientific Colloquium (IWK, Ilmenau, Germany, Sept 12–16, 2014), 20 pp. | Zbl

[8] Liu, Y., Wiercigroch, M., Pavlovskaia, E., Peng, Z. K., “Forward and Backward Motion Control of a Vibro-Impact Capsule System”, Int. J. Non-Linear Mech., 70 (2015), 30–46 | DOI

[9] Bolotnik, N. N., Nunuparov, A. M., and Chashchukhin, V. G., “Capsule-Type Vibration-Driven Robot with an Electromagnetic Actuator and an Opposing Spring: Dynamics and Control of Motion”, J. Comput. Syst. Sci., 55:6 (2016), 986–1000 | DOI | MR | Zbl

[10] Ivanov, A. P., “On the Optimization of a Capsubot with a Spring”, Coupled Problems 2019: Proc. of the 8th Internat. Conf. on Computational Methods for Coupled Problems in Science and Engineering (Sitges, Spain, 2019), eds. E. Oñate, M. Papadrakakis, B. Schrefler, 213–220

[11] Ivanov, A. P., “Analysis of an Impact-Driven Capsule Robot”, Int. J. Nonlin. Mech., 119 (2020), 103257 | DOI