Libration Points Inside a Spherical Cavity of
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 413-427.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the existence and stability of relative equilibria (libration points) of a uniformly rotating gravitating body, which is a homogeneous ball with a spherical cavity, is considered. It is assumed that the rotation is carried out around an axis perpendicular to the axis of symmetry of the body and passing through its center of mass. The libration points located inside the cavity are investigated. Families of both isolated and nonisolated relative equilibria are found. Their stability and bifurcations are investigated. Realms of possible motion are constructed.
Keywords: celestial bodies with cavities, libration points, motion in a noncentral gravitational field, gravitating dumbbell.
Mots-clés : relative equilibria
@article{ND_2021_17_4_a3,
     author = {A. A. Burov and V. I. Nikonov},
     title = {Libration {Points} {Inside} a {Spherical} {Cavity} of},
     journal = {Russian journal of nonlinear dynamics},
     pages = {413--427},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_4_a3/}
}
TY  - JOUR
AU  - A. A. Burov
AU  - V. I. Nikonov
TI  - Libration Points Inside a Spherical Cavity of
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 413
EP  - 427
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_4_a3/
LA  - en
ID  - ND_2021_17_4_a3
ER  - 
%0 Journal Article
%A A. A. Burov
%A V. I. Nikonov
%T Libration Points Inside a Spherical Cavity of
%J Russian journal of nonlinear dynamics
%D 2021
%P 413-427
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_4_a3/
%G en
%F ND_2021_17_4_a3
A. A. Burov; V. I. Nikonov. Libration Points Inside a Spherical Cavity of. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 413-427. http://geodesic.mathdoc.fr/item/ND_2021_17_4_a3/

[1] Scheeres, D. J., Orbital Motion in Strongly Perturbed Environments: Applications to Asteroid, Comet and Planetary Satellite Orbiters, Springer, Berlin, 2012, 408 pp. | MR

[2] Dokl. Akad. Nauk, 475:4 (2017), 389–394 (Russian) | DOI

[3] Kosmicheskie Issledovaniya, 55:4 (2017), 268–277 (Russian) | DOI

[4] Astronom. Vestn., 47:4 (2013), 361–372 (Russian) | DOI

[5] Robe, H. A. G., “A New Kind of $3$-Body Problem”, Celestial Mech. Dynam. Astronom., 16:3 (1977), 343–351 | DOI

[6] Gendenstein, L. E., Kirik, L. A., and Gelfgat, I. M., Solution of Key Problems in Physics for Basic School: Grades 7–9, Ileksa, Moscow, 2016, 208 pp. (Russian)

[7] Chetaev, N. G., Theoretical Mechanics, Springer, Berlin, 1989, 407 pp. | MR | Zbl

[8] Routh, E. J., A Treatise on Stability of a Given State of Motion, McMillan, London, 1877, 108 pp.

[9] Routh, E. J., The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies: Being Part II of a Treatise on the Whole Subject, 6th ed, Dover, New York, 1955, xiv+484 pp. | MR

[10] Karapetyan, A. V., The Stability of Steady Motions, Editorial URSS, Moscow, 1998, 168 pp. (Russian)

[11] Rubanovsky, V. N. and Samsonov, V. A., Stability of Stationary Motions in Examples and Problems, Nauka, Moscow, 1988, 304 pp. (Russian)

[12] Prikl. Mat. Mekh., 48:5 (1984), 725–732 (Russian) | DOI | MR

[13] Prikl. Mat. Mekh., 67:2 (2003), 222–230 (Russian) | DOI | MR | Zbl

[14] Kosmicheskie Issledovaniya, 45:5 (2007), 435–442 (Russain) | DOI

[15] Kosmicheskie Issledovaniya, 46:1 (2008), 42–50 (Russian) | DOI

[16] Munitsyna, M. A., “Relative Equilibria of a Point in a Gravity Field of a Symmetrical Rigid Body”, Problems of Investigating the Stability and Stabilization of Motion, eds. S. Ya. Stepanov, A. A. Burov, A. A. Dorodnitsyn Computing Centre of the Russian Academy of Science, Moscow, 2009, 3–8 (Russian) | MR

[17] Astron. Zh., 79:10 (2002), 944–951 (Russian) | DOI

[18] Avinash, K., Eliasson, B., and Shukla, P. K., “Dynamics of Self-Gravitating Dust Clouds and the Formation of Planetesimals”, Phys. Lett. A, 353:2 (2006), 105–108 | DOI | Zbl

[19] Plastino, A. R. and Plastino, A., “Robe's Restricted Three-Body Problem Revisited”, Celest. Mech. Dyn. Astron., 61:2 (1995), 197–206 | DOI | Zbl

[20] Hallan, P. P. and Rana, N., “The Existence and Stability of Equilibrium Points in the Robe's Restricted Three-Body Problem”, Celest. Mech. Dyn. Astron., 79:2 (2001), 145–155 | DOI | MR | Zbl

[21] Valeriano, L. R., “Parametric Stability in Robe's Problem”, Regul. Chaotic Dyn., 21:1 (2016), 126–135 | DOI | MR | Zbl

[22] Celli, M., “Homographic Three-Body Motions with Positive and Negative Masses”, Proc. of the Internat. Conf. on Symmetry and Perturbation Theory (SPT'2004, Cala Gonone, Italy, June 2004), eds. G. Gaeta, B. Prinari, S. Rauch-Wojciechowski, S. Terracini, World Sci., Singapore, 2005, 75–82 | DOI | MR | Zbl

[23] Celli, M., Sur les mouvements homographiques de $N$ corps associés à des masses de signe quelconque, le cas particulier où la somme des masses est nulle, et une application à la recherche de chorégraphies perverses, PhD Thesis, Université Paris-Diderot, Paris VII, 2005, 63 pp. | MR | Zbl

[24] Celli, M., “The Central Configurations of Four Masses $x$, $-x$, $y$, $-y$”, J. Differential Equations, 235:2 (2007), 668–682 | DOI | MR | Zbl

[25] Piña, E. and Lonngi, P., Newtonian Few-Body Problem Central Configurations with Gravitational Charges of Both Signs, 2012, 23 pp., arXiv: 1212.3219 [physics.gen-ph] | MR | Zbl

[26] Uspekhi Fiz. Nauk, 181:4 (2011), 399–403 (Russian) | DOI | DOI

[27] Voronov, V., “Gravitational “Repulsion””, Quantum, 2009, no. 3, 37–40 (Russian)

[28] Dokl. Akad. Nauk, 475:3 (2017), 269–272 (Russian) | DOI | MR

[29] Burov, A. A., Nikonov, V. I., and Shalimova, E. S., “Motion of a Massive Point along the Surface of a Homogeneous Ball with a Spherical Cavity”, Prikl. Mat. Mekh., 85:4 (2021), 528–543 (Russian)

[30] Nosov, N. N., Dunno on the Moon, Detskaya Literatura, Moscow, 1965, 528 pp. (Russian)

[31] Nosov, N. N., The Adventures of Dunno and His Friends, Progress, Moscow, 1980, 144 pp.