Symmetry and Relative Equilibria of a Bicycle System
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 391-411.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the symmetry of a bicycle moving on a flat, level ground. Applying the Gibbs –Appell equations to the bicycle dynamics, we previously observed that the coefficients of these equations appeared to depend on the lean and steer angles only, and in one such equation, a term quadratic in the rear wheel’s angular velocity and a pseudoforce term would always vanish. These properties indeed arise from the symmetry of the bicycle system. From the point of view of the geometric mechanics, the bicycle’s configuration space is a trivial principal fiber bundle whose structure group plays the role of a symmetry group to keep the Lagrangian and constraint distribution invariant. We analyze the dimension relationship between the space of admissible velocities and the tangent space to the group orbit, and then employ the reduced nonholonomic Lagrange – d’Alembert equations to directly prove the previously observed properties of the bicycle dynamics. We then point out that the Gibbs –Appell equations give the local representative of the reduced dynamic system on the reduced constraint space, whose relative equilibria are related to the bicycle’s uniform upright straight or circular motion. Under the full rank condition of a Jacobian matrix, these relative equilibria are not isolated, but form several families of one-parameter solutions. Finally, we prove that these relative equilibria are Lyapunov (but not asymptotically) stable under certain conditions. However, an isolated asymptotically stable equilibrium may be achieved by restricting the system to an invariant manifold, which is the level set of the reduced constrained energy.
Keywords: bicycle, nonholonomic system, symmetry, reduced system, relative equilibria, Lyapunov stability.
@article{ND_2021_17_4_a2,
     author = {J. Xiong and Y.-B. Jia and C. Liu},
     title = {Symmetry and {Relative} {Equilibria} of a {Bicycle} {System}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {391--411},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_4_a2/}
}
TY  - JOUR
AU  - J. Xiong
AU  - Y.-B. Jia
AU  - C. Liu
TI  - Symmetry and Relative Equilibria of a Bicycle System
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 391
EP  - 411
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_4_a2/
LA  - en
ID  - ND_2021_17_4_a2
ER  - 
%0 Journal Article
%A J. Xiong
%A Y.-B. Jia
%A C. Liu
%T Symmetry and Relative Equilibria of a Bicycle System
%J Russian journal of nonlinear dynamics
%D 2021
%P 391-411
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_4_a2/
%G en
%F ND_2021_17_4_a2
J. Xiong; Y.-B. Jia; C. Liu. Symmetry and Relative Equilibria of a Bicycle System. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 391-411. http://geodesic.mathdoc.fr/item/ND_2021_17_4_a2/

[1] Carvallo, E., “Théorie du mouvement du monocycle et de la bicyclette: Part 2. Théorie de la bicyclette”, J. École polytechnique, Sér. 2, 6 (1901), 1–118

[2] Whipple, F. J. W., “The Stability of the Motion of a Bicycle”, Q. J. Pure Appl. Math., 30:120 (1899), 312–348 | Zbl

[3] Boussinesq, J., “Aper{ç}u sur la théorie de la bicyclette”, J. Math. Pures Appl., 5 (1899), 117–136

[4] Klein, F. and Sommerfeld, A., Über die Theorie des Kreisels, Teubner, Leipzig, 1898, 759 pp. | MR

[5] Timoshenko, S. P. and Young, D. H., Advanced Dynamics, McGraw-Hill, New York, 1948, 400 pp. | MR | Zbl

[6] Sharp, R. S., “The Stability and Control of Motorcycles”, J. Mech. Eng. Sci., 13:5 (1971), 316–329 | DOI

[7] Psiaki, M. L., Bicycle Stability: A Mathematical and Numerical Analysis, Thesis for Bachelor Degree, Princeton Univ., Princeton, N.J., 1979, 89 pp.

[8] Neimark, Ju. I. and Fufaev, N. A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., 33, AMS, Providence, R.I., 1972, 518 pp. | MR | Zbl

[9] Hand, R. S., Comparisons and Stability Analysis of Linearized Equations of Motion for a Basic Bicycle Model, Master's Thesis, Cornell Univ., Ithaca, N.Y., 1988, 200 pp.

[10] Papadopoulos, J. M., Bicycle Steering Dynamics and Self-Stability: A Summary Report on Work in Progress, Technical Report Cornell Bicycle Research Project, Cornell University, Ithaca, NY, 1987, 41 pp. | MR

[11] Meijaard, J. P., Papadopoulos, J. M., Ruina, A., and Schwab, A. L., “Linearized Dynamics Equations for the Balance and Steer of a Bicycle: A Benchmark and Review”, Proc. R. Soc. A Math. Phys. Eng. Sci., 463:2084 (2007), 1955–1982 | MR | Zbl

[12] Basu-Mandal, P., Chatterjee, A., and Papadopoulos, J. M., “Hands-Free Circular Motions of a Benchmark Bicycle”, Proc. R. Soc. A Math. Phys. Eng. Sci., 463:2084 (2007), 1983–2003 | MR | Zbl

[13] Kooijman, J. D. G., Meijaard, J. P., Papadopoulos, J. M., Ruina, A., and Schwab, A. L., “A Bicycle Can Be Self-Stable without Gyroscopic or Caster Effects”, Science, 332:6027 (2011), 339–342 | DOI | MR | Zbl

[14] Peterson, D. L., Gede, G., and Hubbard, M., “Symbolic Linearization of Equations of Motion of Constrained Multibody Systems”, Multibody Syst. Dyn., 33:2 (2015), 143–161 | DOI | MR | Zbl

[15] Getz, N. H. and Marsden, J. E., “Control for an Autonomous Bicycle”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Nagoya, May 1995), 1397–1402

[16] Koon, W. S. and Marsden, J. E., “The Hamiltonian and Lagrangian Approaches to the Dynamics of Nonholonomic Systems”, Rep. Math. Phys., 40:1 (1997), 21–62 | DOI | MR | Zbl

[17] Boyer, F., Porez, M., and Mauny, J., “Reduced Dynamics of the Non-Holonomic Whipple Bicycle”, J. Nonlinear Sci., 28:3 (2018), 943–983 | DOI | MR | Zbl

[18] Åström, K. J. and Murray, R. M., Feedback Systems: An Introduction for Scientists and Engineers, Princeton Univ. Press, Princeton, 2010, 404 pp. | MR

[19] Baquero-Suárez, M., Cortés-Romero, J., Arcos-Legarda, J., and Coral-Enriquez, H., “A Robust Two-Stage Active Disturbance Rejection Control for the Stabilization of a Riderless Bicycle”, Multibody Syst. Dyn., 45:1 (2019), 7–35 | DOI | MR | Zbl

[20] Moore, J. K., Human Control of a Bicycle, PhD Thesis, Univ. of California, Los Angeles, Calif., 2012, 316 pp. | Zbl

[21] Kooijman, J. D. G. and Schwab, A. L., “A Review on Bicycle and Motorcycle Rider Control with a Perspective on Handling Qualities”, Veh. Syst. Dyn., 51:11 (2013), 1722–1764 | DOI

[22] Schwab, A. L. and Meijaard, J. P., “A Review on Bicycle Dynamics and Rider Control”, Veh. Syst. Dyn., 51:7 (2013), 1059–1090 | DOI

[23] Sumbatov, A. S., “Nonholonomic Systems”, Regul. Chaotic Dyn., 7:2 (2002), 221–238 | DOI | MR | Zbl

[24] Borisov, A. V. and Mamaev, I. S., “Symmetries and Reduction in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 20:5 (2015), 553–604 | DOI | MR | Zbl

[25] Chaplygin, S., “On the Theory of Motion of Nonholonomic Systems. The Reducing-Multiplier Theorem”, Regul. Chaotic Dyn., 13:4 (2008), 369–376 | DOI | MR | Zbl

[26] Zhao, Z. and Liu, C., “Contact Constraints and Dynamical Equations in Lagrangian Systems”, Multibody Syst. Dyn., 38:1 (2016), 77–99 | DOI | MR | Zbl

[27] Peterson, D., Hubbard, M., and Estivalet, M., “Analysis of the Holonomic Constraint in the Whipple Bicycle Model (P267)”, The Engineering of Sport 7, eds. M. Estivalet, P. Brisson, Springer, Paris, 2008, 623–631

[28] Peterson, D. L., Bicycle Dynamics: Modelling and Experimental Validation, PhD Thesis, Univ. of California, Los Angeles, Calif., 2013 | MR | Zbl

[29] Wang, E. X., Zou, J., Xue, G., Liu, Y., Li, Y., and Fan, Q., “Development of Efficient Nonlinear Benchmark Bicycle Dynamics for Control Applications”, IEEE Trans. Intell. Transp. Syst., 16:4 (2015), 2236–2246 | DOI

[30] Xiong, J., Wang, N., and Liu, C., “Stability Analysis for the Whipple Bicycle Dynamics”, Multibody Syst. Dyn., 48:3 (2020), 311–335 | DOI | MR | Zbl

[31] Xiong, J., Wang, N., and Liu, C., “Bicycle Dynamics and Its Circular Solution on a Revolution Surface”, Acta Mech. Sin., 36:1 (2020), 220–233 | DOI | MR

[32] Jones, D. E., “The Stability of the Bicycle”, Phys. Today, 23:4 (1970), 34–40 | DOI

[33] Kirillov, O. N., “Locating the Sets of Exceptional Points in Dissipative Systems and the Self-stability of Bicycles”, Entropy, 20:7 (2018), 502–517 | DOI

[34] Kooijman, J. D. G., Schwab, A. L., and Meijaard, J. P., “Experimental Validation of a Model of an Uncontrolled Bicycle”, Multibody Syst. Dyn., 19:1–2 (2008), 115–132 | DOI | Zbl

[35] Schwab, A. L., Meijaard, J. P., and Papadopoulos, J. M., “Benchmark Results on the Linearized Equations of Motion of an Uncontrolled Bicycle”, J. Mech. Sci. Technol., 19:1 (2005), 292–304 | DOI

[36] Limebeer, D. J. and Sharp, R. S., “Bicycles, Motorcycles, and Models”, IEEE Control Syst. Mag., 26:5 (2006), 34–61 | DOI

[37] Sharp, R. S. and Limebeer, D. J., “A Motorcycle Model for Stability and Control Analysis”, Multibody Syst. Dyn., 6:2 (2001), 123–142 | DOI | MR | Zbl

[38] Escalona, J. L. and Recuero, A. M., “A Bicycle Model for Education in Multibody Dynamics and Real-Time Interactive Simulation”, Multibody Syst. Dyn., 27:3 (2012), 383–402 | DOI | MR | Zbl

[39] Franke, G., Suhr, W., and Rieß, F., “An Advanced Model of Bicycle Dynamics”, Eur. J. Phys., 11:2 (1990), 116–121 | DOI | MR

[40] Lennartsson, A., Efficient Multibody Dynamics, PhD Thesis, KTH Royal Institute of Technology, Stockholm, 1999, 156 pp.

[41] Åström, K. J., Klein, R. E., and Lennartsson, A., “Bicycle Dynamics and Control: Adapted Bicycles for Education and Research”, IEEE Control Syst. Mag., 25:4 (2005), 26–47 | DOI | MR

[42] Marsden, J. E., Lectures on Mechanics, Cambridge Univ. Press, Cambridge, 1992, 268 pp. | MR | Zbl

[43] Marsden, J. E., Ratiu, T. S., Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts Appl. Math., 17, 2nd ed., Springer, New York, 2013, 604 pp. | MR

[44] Zenkov, D. V., Integrability and Stability of Nonholonomic Systems, PhD Thesis, The Ohio State University, Columbus, Ohio, 1998 | MR | Zbl

[45] Zenkov, D. V., Bloch, A. M., and Marsden, J. E., “The Energy-Momentum Method for the Stability of Non-holonomic Systems”, Dynam. Stabil. Syst., 13:2 (1998), 123–165 | DOI | MR | Zbl

[46] Bloch, A. M., Nonholonomic Mechanics and Control, J. Interdiscip. Math., 24, Springer, New York, 2003, xix,484 pp. | DOI | MR | Zbl

[47] Kelly, S. D. and Murray, R. D., “Geometric Phases and Robotic Locomotion”, J. Robotic Systems, 12:6 (1995), 417–431 | DOI | Zbl

[48] Bloch, A. M., Krishnapasad, P. S., Marsden, J. E., and Murray, R. M., “Nonholonomic Mechanical Systems with Symmetry”, Arch. Ration. Mech. Anal., 136 (1996), 21–99 | DOI | MR | Zbl

[49] Ostrowski, J., Burdick, J., Lewis, A. D., and Murray, R. M., “The Mechanics of Undulatory Locomotion: The Mixed Kinematic and Dynamic Case”, Proc. of the 1995 IEEE Internat. Conf. on Robotics and Automation (Nagoya, Japan, 21–27 May 1995), v. 2, 1945–1951

[50] Ostrowski, J. and Burdick, J., “The Geometric Mechanics of Undulatory Robotic Locomotion”, Int. J. Robot. Res., 17:7 (1998), 683–701 | DOI

[51] Kang, H., Liu, C., and Jia, Y. B., “Inverse Dynamics and Energy Optimal Trajectories for a Wheeled Mobile Robot”, Int. J. Mech. Sci., 134 (2017), 576–588 | DOI

[52] Ostrowski, J., Lewis, A., Murray, R., and Burdick, J., “Nonholonomic Mechanics and Locomotion: The Snakeboard Example”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (San Diego, Calif., May 1994), 2391–2397

[53] Boyer, F. and Belkhiri, A., “Reduced Locomotion Dynamics with Passive Internal DoFs: Application to Nonholonomic and Soft Robotics”, IEEE Trans. Robot., 30:3 (2014), 578–592 | DOI

[54] Shammas, E. A., Choset, H., and Rizzi, A. A., “Geometric Motion Planning Analysis for Two Classes of Underactuated Mechanical Systems”, Int. J. Robot. Res., 26:10 (2007), 1043–1073 | DOI

[55] Gutman, E. and Or, Y., “Symmetries and Gaits for Purcell's Three-Link Microswimmer Model”, IEEE Trans. Robot., 32:1 (2015), 53–69 | DOI