Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_4_a2, author = {J. Xiong and Y.-B. Jia and C. Liu}, title = {Symmetry and {Relative} {Equilibria} of a {Bicycle} {System}}, journal = {Russian journal of nonlinear dynamics}, pages = {391--411}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_4_a2/} }
J. Xiong; Y.-B. Jia; C. Liu. Symmetry and Relative Equilibria of a Bicycle System. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 391-411. http://geodesic.mathdoc.fr/item/ND_2021_17_4_a2/
[1] Carvallo, E., “Théorie du mouvement du monocycle et de la bicyclette: Part 2. Théorie de la bicyclette”, J. École polytechnique, Sér. 2, 6 (1901), 1–118
[2] Whipple, F. J. W., “The Stability of the Motion of a Bicycle”, Q. J. Pure Appl. Math., 30:120 (1899), 312–348 | Zbl
[3] Boussinesq, J., “Aper{ç}u sur la théorie de la bicyclette”, J. Math. Pures Appl., 5 (1899), 117–136
[4] Klein, F. and Sommerfeld, A., Über die Theorie des Kreisels, Teubner, Leipzig, 1898, 759 pp. | MR
[5] Timoshenko, S. P. and Young, D. H., Advanced Dynamics, McGraw-Hill, New York, 1948, 400 pp. | MR | Zbl
[6] Sharp, R. S., “The Stability and Control of Motorcycles”, J. Mech. Eng. Sci., 13:5 (1971), 316–329 | DOI
[7] Psiaki, M. L., Bicycle Stability: A Mathematical and Numerical Analysis, Thesis for Bachelor Degree, Princeton Univ., Princeton, N.J., 1979, 89 pp.
[8] Neimark, Ju. I. and Fufaev, N. A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., 33, AMS, Providence, R.I., 1972, 518 pp. | MR | Zbl
[9] Hand, R. S., Comparisons and Stability Analysis of Linearized Equations of Motion for a Basic Bicycle Model, Master's Thesis, Cornell Univ., Ithaca, N.Y., 1988, 200 pp.
[10] Papadopoulos, J. M., Bicycle Steering Dynamics and Self-Stability: A Summary Report on Work in Progress, Technical Report Cornell Bicycle Research Project, Cornell University, Ithaca, NY, 1987, 41 pp. | MR
[11] Meijaard, J. P., Papadopoulos, J. M., Ruina, A., and Schwab, A. L., “Linearized Dynamics Equations for the Balance and Steer of a Bicycle: A Benchmark and Review”, Proc. R. Soc. A Math. Phys. Eng. Sci., 463:2084 (2007), 1955–1982 | MR | Zbl
[12] Basu-Mandal, P., Chatterjee, A., and Papadopoulos, J. M., “Hands-Free Circular Motions of a Benchmark Bicycle”, Proc. R. Soc. A Math. Phys. Eng. Sci., 463:2084 (2007), 1983–2003 | MR | Zbl
[13] Kooijman, J. D. G., Meijaard, J. P., Papadopoulos, J. M., Ruina, A., and Schwab, A. L., “A Bicycle Can Be Self-Stable without Gyroscopic or Caster Effects”, Science, 332:6027 (2011), 339–342 | DOI | MR | Zbl
[14] Peterson, D. L., Gede, G., and Hubbard, M., “Symbolic Linearization of Equations of Motion of Constrained Multibody Systems”, Multibody Syst. Dyn., 33:2 (2015), 143–161 | DOI | MR | Zbl
[15] Getz, N. H. and Marsden, J. E., “Control for an Autonomous Bicycle”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Nagoya, May 1995), 1397–1402
[16] Koon, W. S. and Marsden, J. E., “The Hamiltonian and Lagrangian Approaches to the Dynamics of Nonholonomic Systems”, Rep. Math. Phys., 40:1 (1997), 21–62 | DOI | MR | Zbl
[17] Boyer, F., Porez, M., and Mauny, J., “Reduced Dynamics of the Non-Holonomic Whipple Bicycle”, J. Nonlinear Sci., 28:3 (2018), 943–983 | DOI | MR | Zbl
[18] Åström, K. J. and Murray, R. M., Feedback Systems: An Introduction for Scientists and Engineers, Princeton Univ. Press, Princeton, 2010, 404 pp. | MR
[19] Baquero-Suárez, M., Cortés-Romero, J., Arcos-Legarda, J., and Coral-Enriquez, H., “A Robust Two-Stage Active Disturbance Rejection Control for the Stabilization of a Riderless Bicycle”, Multibody Syst. Dyn., 45:1 (2019), 7–35 | DOI | MR | Zbl
[20] Moore, J. K., Human Control of a Bicycle, PhD Thesis, Univ. of California, Los Angeles, Calif., 2012, 316 pp. | Zbl
[21] Kooijman, J. D. G. and Schwab, A. L., “A Review on Bicycle and Motorcycle Rider Control with a Perspective on Handling Qualities”, Veh. Syst. Dyn., 51:11 (2013), 1722–1764 | DOI
[22] Schwab, A. L. and Meijaard, J. P., “A Review on Bicycle Dynamics and Rider Control”, Veh. Syst. Dyn., 51:7 (2013), 1059–1090 | DOI
[23] Sumbatov, A. S., “Nonholonomic Systems”, Regul. Chaotic Dyn., 7:2 (2002), 221–238 | DOI | MR | Zbl
[24] Borisov, A. V. and Mamaev, I. S., “Symmetries and Reduction in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 20:5 (2015), 553–604 | DOI | MR | Zbl
[25] Chaplygin, S., “On the Theory of Motion of Nonholonomic Systems. The Reducing-Multiplier Theorem”, Regul. Chaotic Dyn., 13:4 (2008), 369–376 | DOI | MR | Zbl
[26] Zhao, Z. and Liu, C., “Contact Constraints and Dynamical Equations in Lagrangian Systems”, Multibody Syst. Dyn., 38:1 (2016), 77–99 | DOI | MR | Zbl
[27] Peterson, D., Hubbard, M., and Estivalet, M., “Analysis of the Holonomic Constraint in the Whipple Bicycle Model (P267)”, The Engineering of Sport 7, eds. M. Estivalet, P. Brisson, Springer, Paris, 2008, 623–631
[28] Peterson, D. L., Bicycle Dynamics: Modelling and Experimental Validation, PhD Thesis, Univ. of California, Los Angeles, Calif., 2013 | MR | Zbl
[29] Wang, E. X., Zou, J., Xue, G., Liu, Y., Li, Y., and Fan, Q., “Development of Efficient Nonlinear Benchmark Bicycle Dynamics for Control Applications”, IEEE Trans. Intell. Transp. Syst., 16:4 (2015), 2236–2246 | DOI
[30] Xiong, J., Wang, N., and Liu, C., “Stability Analysis for the Whipple Bicycle Dynamics”, Multibody Syst. Dyn., 48:3 (2020), 311–335 | DOI | MR | Zbl
[31] Xiong, J., Wang, N., and Liu, C., “Bicycle Dynamics and Its Circular Solution on a Revolution Surface”, Acta Mech. Sin., 36:1 (2020), 220–233 | DOI | MR
[32] Jones, D. E., “The Stability of the Bicycle”, Phys. Today, 23:4 (1970), 34–40 | DOI
[33] Kirillov, O. N., “Locating the Sets of Exceptional Points in Dissipative Systems and the Self-stability of Bicycles”, Entropy, 20:7 (2018), 502–517 | DOI
[34] Kooijman, J. D. G., Schwab, A. L., and Meijaard, J. P., “Experimental Validation of a Model of an Uncontrolled Bicycle”, Multibody Syst. Dyn., 19:1–2 (2008), 115–132 | DOI | Zbl
[35] Schwab, A. L., Meijaard, J. P., and Papadopoulos, J. M., “Benchmark Results on the Linearized Equations of Motion of an Uncontrolled Bicycle”, J. Mech. Sci. Technol., 19:1 (2005), 292–304 | DOI
[36] Limebeer, D. J. and Sharp, R. S., “Bicycles, Motorcycles, and Models”, IEEE Control Syst. Mag., 26:5 (2006), 34–61 | DOI
[37] Sharp, R. S. and Limebeer, D. J., “A Motorcycle Model for Stability and Control Analysis”, Multibody Syst. Dyn., 6:2 (2001), 123–142 | DOI | MR | Zbl
[38] Escalona, J. L. and Recuero, A. M., “A Bicycle Model for Education in Multibody Dynamics and Real-Time Interactive Simulation”, Multibody Syst. Dyn., 27:3 (2012), 383–402 | DOI | MR | Zbl
[39] Franke, G., Suhr, W., and Rieß, F., “An Advanced Model of Bicycle Dynamics”, Eur. J. Phys., 11:2 (1990), 116–121 | DOI | MR
[40] Lennartsson, A., Efficient Multibody Dynamics, PhD Thesis, KTH Royal Institute of Technology, Stockholm, 1999, 156 pp.
[41] Åström, K. J., Klein, R. E., and Lennartsson, A., “Bicycle Dynamics and Control: Adapted Bicycles for Education and Research”, IEEE Control Syst. Mag., 25:4 (2005), 26–47 | DOI | MR
[42] Marsden, J. E., Lectures on Mechanics, Cambridge Univ. Press, Cambridge, 1992, 268 pp. | MR | Zbl
[43] Marsden, J. E., Ratiu, T. S., Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts Appl. Math., 17, 2nd ed., Springer, New York, 2013, 604 pp. | MR
[44] Zenkov, D. V., Integrability and Stability of Nonholonomic Systems, PhD Thesis, The Ohio State University, Columbus, Ohio, 1998 | MR | Zbl
[45] Zenkov, D. V., Bloch, A. M., and Marsden, J. E., “The Energy-Momentum Method for the Stability of Non-holonomic Systems”, Dynam. Stabil. Syst., 13:2 (1998), 123–165 | DOI | MR | Zbl
[46] Bloch, A. M., Nonholonomic Mechanics and Control, J. Interdiscip. Math., 24, Springer, New York, 2003, xix,484 pp. | DOI | MR | Zbl
[47] Kelly, S. D. and Murray, R. D., “Geometric Phases and Robotic Locomotion”, J. Robotic Systems, 12:6 (1995), 417–431 | DOI | Zbl
[48] Bloch, A. M., Krishnapasad, P. S., Marsden, J. E., and Murray, R. M., “Nonholonomic Mechanical Systems with Symmetry”, Arch. Ration. Mech. Anal., 136 (1996), 21–99 | DOI | MR | Zbl
[49] Ostrowski, J., Burdick, J., Lewis, A. D., and Murray, R. M., “The Mechanics of Undulatory Locomotion: The Mixed Kinematic and Dynamic Case”, Proc. of the 1995 IEEE Internat. Conf. on Robotics and Automation (Nagoya, Japan, 21–27 May 1995), v. 2, 1945–1951
[50] Ostrowski, J. and Burdick, J., “The Geometric Mechanics of Undulatory Robotic Locomotion”, Int. J. Robot. Res., 17:7 (1998), 683–701 | DOI
[51] Kang, H., Liu, C., and Jia, Y. B., “Inverse Dynamics and Energy Optimal Trajectories for a Wheeled Mobile Robot”, Int. J. Mech. Sci., 134 (2017), 576–588 | DOI
[52] Ostrowski, J., Lewis, A., Murray, R., and Burdick, J., “Nonholonomic Mechanics and Locomotion: The Snakeboard Example”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (San Diego, Calif., May 1994), 2391–2397
[53] Boyer, F. and Belkhiri, A., “Reduced Locomotion Dynamics with Passive Internal DoFs: Application to Nonholonomic and Soft Robotics”, IEEE Trans. Robot., 30:3 (2014), 578–592 | DOI
[54] Shammas, E. A., Choset, H., and Rizzi, A. A., “Geometric Motion Planning Analysis for Two Classes of Underactuated Mechanical Systems”, Int. J. Robot. Res., 26:10 (2007), 1043–1073 | DOI
[55] Gutman, E. and Or, Y., “Symmetries and Gaits for Purcell's Three-Link Microswimmer Model”, IEEE Trans. Robot., 32:1 (2015), 53–69 | DOI