The Problem of Balancing an Inverted Spherical
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 507-525.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper addresses the problem of balancing an inverted pendulum on an omnidirectional platform in a three-dimensional setting. Equations of motion of the platform – pendulum system in quasi-velocities are constructed. To solve the problem of balancing the pendulum by controlling the motion of the platform, a hybrid genetic algorithm is used. The behavior of the system is investigated under different initial conditions taking into account a necessary stop of the platform or the need for continuation of the motion at the end point of the trajectory. It is shown that the solution of the problem in a two-dimensional setting is a particular case of three-dimensional balancing.
Keywords: balancing of an inverted pendulum, omnidirectional platform, hybrid genetic algorithm, Poincarй equations in quasi-velocities.
@article{ND_2021_17_4_a10,
     author = {A. S. Shaura and V. A. Tenenev and E. V. Vetchanin},
     title = {The {Problem} of {Balancing} an {Inverted} {Spherical}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {507--525},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_4_a10/}
}
TY  - JOUR
AU  - A. S. Shaura
AU  - V. A. Tenenev
AU  - E. V. Vetchanin
TI  - The Problem of Balancing an Inverted Spherical
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 507
EP  - 525
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_4_a10/
LA  - en
ID  - ND_2021_17_4_a10
ER  - 
%0 Journal Article
%A A. S. Shaura
%A V. A. Tenenev
%A E. V. Vetchanin
%T The Problem of Balancing an Inverted Spherical
%J Russian journal of nonlinear dynamics
%D 2021
%P 507-525
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_4_a10/
%G en
%F ND_2021_17_4_a10
A. S. Shaura; V. A. Tenenev; E. V. Vetchanin. The Problem of Balancing an Inverted Spherical. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 507-525. http://geodesic.mathdoc.fr/item/ND_2021_17_4_a10/

[1] Lunberg, K. H. and Barton, T. W., “History of Inverted-Pendulum Systems”, IFAC Proc. Vols., 42:24 (2010), 131–135 | DOI

[2] Kafetzis, I. and Moysis, L., “Inverted Pendulum: A System with Innumerable Applications”, 9th International Week Dedicated to Maths (Thessaloniki, Greece, March 2017), 12 pp. | Zbl

[3] Mahlstedt, B., Optimal VTOL of SpaceX's Grasshopper, Technical Report , 2012, 26 pp. http://cs229.stanford.edu/proj2012/Mahlstedt-OptimalVTOLofSpaceXsGrasshopper-FULL.pdf

[4] Miller, P., Building a Two Wheeled Balancing Robot, USQ ePrints , 2008, 120 pp. https://eprints.usq.edu.au/6168/

[5] Kajita, S., Kanehiro, K., Yokoi, K., and Hirukawa, H. D., “The 3D Linear Inverted Pendulum Mode: A Simple Modeling for a Bipedwalking Pattern Generation”, IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS'2001), 239–246

[6] Sakka, S., Hayot, C., and Lacouture, P., “A Generalized 3D Inverted Pendulum Model to Represent Human Normal Walking”, IEEE-RAS Internat. Conf. on Humanoid Robots (Memphis, Tenn., 2010), 7 pp.

[7] Florian, R. V., Correct Equations for the Dynamics of the Cart-Pole System, Center for Cognitive and Neural Studies, 2008, 6 pp.

[8] Brownlee, J., The Pole Balancing Problem: A Benchmark Control Theory Problem, Technical Report 7-01, Swinburne University of Technology, 2005, 12 pp.

[9] Yon, Y. L., Choon, L. H., and Yen, M. F. W., “Stabilising an Invertedpendulum with PID Controller”, MATEC Web Conf., 152 (2018), 02009, 14 pp. | DOI

[10] Maneetham, D. and Sutyasadi, P., “System Design for Inverted Pendulum Using LQR Control via IoT”, Int. J. Simul. Multidiscip. Des. Optim., 11 (2020), ID 12, 8 pp.

[11] Prasad, L. B., Tyagi, B., and Gupta, H. O., “Optimal Control of Nonlinear Inverted Pendulum System Using PID Controller and LQR: Performance Analysis without and with Disturbance Input”, Int. J. Autom. Comput., 11:6 (2014), 661–670 | DOI

[12] Mishra, S. K. and Chandra, D., “Stabilization and Tracking Control of Inverted Pendulum Using Fractional Order PID Controllers”, J. Eng., 2014, 752918, 9 pp.

[13] Kumar, E. V. and Jerome, J., “Robust LQR Controller Design for Stabilizing and Trajectory Tracking of Inverted Pendulum”, Procedia Eng., 64 (2013), 169–178 | DOI

[14] Kumar, S., Balancing a CartPole System with Reinforcement Learning: A Tutorial, 2020, 8 pp., arXiv: 2006.04938 [cs.RO]

[15] Chang, O., Kwiatkowski, R., Chen, S., and Lipson, H., “Agent Embeddings: A Latent Representation for Pole-Balancing Networks”, AAMAS'19: Proc. of the 18th Internat. Conf. on Autonomous Agents and Multiagent Systems (Montreal, Canada, May 2019), 9 pp.

[16] Lawrence, W. M., Solving XOR and Pole-Balancing Problems Using a Multi-Population NEAT, Master's Thesis, Centre of Computational Intelligence Faculty of Computing, Engineering and Media De Montfort University, UK, 2020, 55 pp.

[17] Minnaert, E., Hemmelman, B., and Dolan D., “Inverted Pendulum Design with Hardware Fuzzy Logic Controller”, J. Syst. Cybern. Inf., 6:3 (2017), 34–39

[18] Abdulbasid, I., Mukhtar, H., and Mustapha, M., “Hybrid Fuzzy Control of Nonlinear Inverted Pendulum System”, Bayero J. Eng. Technol., 14:2 (2019), 200–208

[19] Bratishchev, A. V., “Control of Fluctuations of Pendulum on the Mobile Platform”, Differential Equations and Control Processes, 2020, no. 4, 76–87 (Russian) | MR | Zbl

[20] Oliveira, H. P., Sousa, A. J., Moreira, A. P., and Costa, P. J., “Dynamical Models for Omni-Directional Robots with 3 and 4 Wheels”, Proc. of the 5th Internat. Conf. on Informatics in Control, Automation and Robotics (ICINCO'2008), 189–196

[21] Karavaev, Yu. L. and Kilin A. A., “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Nelin. Dinam., 11:1 (2015), 187–204 (Russian) | DOI | MR | Zbl

[22] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “An Omni-Wheel Vehicle on a Plane and a Sphere”, Nelin. Dinam., 7:4 (2011), 785–801 (Russian) | DOI

[23] Kilin, A. A. and Bobykin, A. D., “Control of a Vehicle with Omniwheels on a Plane”, Nelin. Dinam., 10:4 (2014), 473–481 (Russian) | DOI

[24] Tenenev, V. A. and Paklin, N. B., “Hybrid Genetic Algorithm with Additional Leader Training”, Intellekt. Sist. Proizv., 2003, no. 2, 181–206 (Russian)

[25] Tenenev, V. A. and Yakimovich, B. A.,, Genetic Algorithms in System Modeling, IzhGTU, Izhevsk, 2010, 308 pp. (Russian)

[26] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian) | MR

[27] Landau, L. D. and Lifshitz, E. M., Course of Theoretical Physics: Vol. 1. Mechanics, 3rd ed., Pergamon, Oxford, 1976, 224 pp. | MR

[28] Vetchanin, E. V., Tenenev, V. A., and Shaura, A. S., “Motion Control of a Rigid Body in Viscous Fluid”, Computer Research and Modeling, 5:4 (2013), 659–675 (Russian) | DOI

[29] Kilin, A. A. and Bobykin, A. D., “Control of a Vehicle with Omniwheels on a Plane”, Nelin. Dinam., 10:4 (2014), 473–481 (Russian) | DOI