Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_4_a10, author = {A. S. Shaura and V. A. Tenenev and E. V. Vetchanin}, title = {The {Problem} of {Balancing} an {Inverted} {Spherical}}, journal = {Russian journal of nonlinear dynamics}, pages = {507--525}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_4_a10/} }
TY - JOUR AU - A. S. Shaura AU - V. A. Tenenev AU - E. V. Vetchanin TI - The Problem of Balancing an Inverted Spherical JO - Russian journal of nonlinear dynamics PY - 2021 SP - 507 EP - 525 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2021_17_4_a10/ LA - en ID - ND_2021_17_4_a10 ER -
A. S. Shaura; V. A. Tenenev; E. V. Vetchanin. The Problem of Balancing an Inverted Spherical. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 507-525. http://geodesic.mathdoc.fr/item/ND_2021_17_4_a10/
[1] Lunberg, K. H. and Barton, T. W., “History of Inverted-Pendulum Systems”, IFAC Proc. Vols., 42:24 (2010), 131–135 | DOI
[2] Kafetzis, I. and Moysis, L., “Inverted Pendulum: A System with Innumerable Applications”, 9th International Week Dedicated to Maths (Thessaloniki, Greece, March 2017), 12 pp. | Zbl
[3] Mahlstedt, B., Optimal VTOL of SpaceX's Grasshopper, Technical Report , 2012, 26 pp. http://cs229.stanford.edu/proj2012/Mahlstedt-OptimalVTOLofSpaceXsGrasshopper-FULL.pdf
[4] Miller, P., Building a Two Wheeled Balancing Robot, USQ ePrints , 2008, 120 pp. https://eprints.usq.edu.au/6168/
[5] Kajita, S., Kanehiro, K., Yokoi, K., and Hirukawa, H. D., “The 3D Linear Inverted Pendulum Mode: A Simple Modeling for a Bipedwalking Pattern Generation”, IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS'2001), 239–246
[6] Sakka, S., Hayot, C., and Lacouture, P., “A Generalized 3D Inverted Pendulum Model to Represent Human Normal Walking”, IEEE-RAS Internat. Conf. on Humanoid Robots (Memphis, Tenn., 2010), 7 pp.
[7] Florian, R. V., Correct Equations for the Dynamics of the Cart-Pole System, Center for Cognitive and Neural Studies, 2008, 6 pp.
[8] Brownlee, J., The Pole Balancing Problem: A Benchmark Control Theory Problem, Technical Report 7-01, Swinburne University of Technology, 2005, 12 pp.
[9] Yon, Y. L., Choon, L. H., and Yen, M. F. W., “Stabilising an Invertedpendulum with PID Controller”, MATEC Web Conf., 152 (2018), 02009, 14 pp. | DOI
[10] Maneetham, D. and Sutyasadi, P., “System Design for Inverted Pendulum Using LQR Control via IoT”, Int. J. Simul. Multidiscip. Des. Optim., 11 (2020), ID 12, 8 pp.
[11] Prasad, L. B., Tyagi, B., and Gupta, H. O., “Optimal Control of Nonlinear Inverted Pendulum System Using PID Controller and LQR: Performance Analysis without and with Disturbance Input”, Int. J. Autom. Comput., 11:6 (2014), 661–670 | DOI
[12] Mishra, S. K. and Chandra, D., “Stabilization and Tracking Control of Inverted Pendulum Using Fractional Order PID Controllers”, J. Eng., 2014, 752918, 9 pp.
[13] Kumar, E. V. and Jerome, J., “Robust LQR Controller Design for Stabilizing and Trajectory Tracking of Inverted Pendulum”, Procedia Eng., 64 (2013), 169–178 | DOI
[14] Kumar, S., Balancing a CartPole System with Reinforcement Learning: A Tutorial, 2020, 8 pp., arXiv: 2006.04938 [cs.RO]
[15] Chang, O., Kwiatkowski, R., Chen, S., and Lipson, H., “Agent Embeddings: A Latent Representation for Pole-Balancing Networks”, AAMAS'19: Proc. of the 18th Internat. Conf. on Autonomous Agents and Multiagent Systems (Montreal, Canada, May 2019), 9 pp.
[16] Lawrence, W. M., Solving XOR and Pole-Balancing Problems Using a Multi-Population NEAT, Master's Thesis, Centre of Computational Intelligence Faculty of Computing, Engineering and Media De Montfort University, UK, 2020, 55 pp.
[17] Minnaert, E., Hemmelman, B., and Dolan D., “Inverted Pendulum Design with Hardware Fuzzy Logic Controller”, J. Syst. Cybern. Inf., 6:3 (2017), 34–39
[18] Abdulbasid, I., Mukhtar, H., and Mustapha, M., “Hybrid Fuzzy Control of Nonlinear Inverted Pendulum System”, Bayero J. Eng. Technol., 14:2 (2019), 200–208
[19] Bratishchev, A. V., “Control of Fluctuations of Pendulum on the Mobile Platform”, Differential Equations and Control Processes, 2020, no. 4, 76–87 (Russian) | MR | Zbl
[20] Oliveira, H. P., Sousa, A. J., Moreira, A. P., and Costa, P. J., “Dynamical Models for Omni-Directional Robots with 3 and 4 Wheels”, Proc. of the 5th Internat. Conf. on Informatics in Control, Automation and Robotics (ICINCO'2008), 189–196
[21] Karavaev, Yu. L. and Kilin A. A., “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Nelin. Dinam., 11:1 (2015), 187–204 (Russian) | DOI | MR | Zbl
[22] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “An Omni-Wheel Vehicle on a Plane and a Sphere”, Nelin. Dinam., 7:4 (2011), 785–801 (Russian) | DOI
[23] Kilin, A. A. and Bobykin, A. D., “Control of a Vehicle with Omniwheels on a Plane”, Nelin. Dinam., 10:4 (2014), 473–481 (Russian) | DOI
[24] Tenenev, V. A. and Paklin, N. B., “Hybrid Genetic Algorithm with Additional Leader Training”, Intellekt. Sist. Proizv., 2003, no. 2, 181–206 (Russian)
[25] Tenenev, V. A. and Yakimovich, B. A.,, Genetic Algorithms in System Modeling, IzhGTU, Izhevsk, 2010, 308 pp. (Russian)
[26] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian) | MR
[27] Landau, L. D. and Lifshitz, E. M., Course of Theoretical Physics: Vol. 1. Mechanics, 3rd ed., Pergamon, Oxford, 1976, 224 pp. | MR
[28] Vetchanin, E. V., Tenenev, V. A., and Shaura, A. S., “Motion Control of a Rigid Body in Viscous Fluid”, Computer Research and Modeling, 5:4 (2013), 659–675 (Russian) | DOI
[29] Kilin, A. A. and Bobykin, A. D., “Control of a Vehicle with Omniwheels on a Plane”, Nelin. Dinam., 10:4 (2014), 473–481 (Russian) | DOI