Qualitative Analysis of Some Libration Points in the
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 369-390.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the situation where three heavy gravitational bodies form the Lagrange configuration rotating in a fixed plane and the fourth body of negligible mass moves in this plane. We present three cases of so-called libration points and we study their stability using linear approximation and KAM theory. In some situations we prove the Lyapunov stability for generic values of some parameter of the problem.
Keywords: libration point, stability.
Mots-clés : Lagrange configuration
@article{ND_2021_17_4_a1,
     author = {A. Ligeza and H. Zoladek},
     title = {Qualitative {Analysis} of {Some} {Libration} {Points} in the},
     journal = {Russian journal of nonlinear dynamics},
     pages = {369--390},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_4_a1/}
}
TY  - JOUR
AU  - A. Ligeza
AU  - H. Zoladek
TI  - Qualitative Analysis of Some Libration Points in the
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 369
EP  - 390
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_4_a1/
LA  - en
ID  - ND_2021_17_4_a1
ER  - 
%0 Journal Article
%A A. Ligeza
%A H. Zoladek
%T Qualitative Analysis of Some Libration Points in the
%J Russian journal of nonlinear dynamics
%D 2021
%P 369-390
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_4_a1/
%G en
%F ND_2021_17_4_a1
A. Ligeza; H. Zoladek. Qualitative Analysis of Some Libration Points in the. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 369-390. http://geodesic.mathdoc.fr/item/ND_2021_17_4_a1/

[1] Arenstorf, R. F., “Central Configurations of Four Bodies with One Inferior Mass”, Celestial Mech., 28:1–2 (1982), 9–15 | DOI | MR | Zbl

[2] Arnol'd, V. I., Mathematical Methods of Classical Mechanics, Grad. Texts in Math., 60, 2nd ed., Springer, New York, 1997, 529 pp. | MR

[3] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl

[4] Baltagiannis, A. N. and Papadakis, K. E., “Equilibrium Points and Their Stability in the Restricted Four-Body Problem”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21:8 (2011), 2179–2193 | DOI | MR | Zbl

[5] Baltaggianis, A. N. and Papadakis, K. N., “Families of Periodic Orbits in the Restricted Four-Body Problem”, Astrophys. Space Sci., 336:2 (2011), 357–367 | DOI | MR

[6] Bardin, B. S., “On Motions near the Lagrange Equilibrium Point $L_4^{}$ in the Case of Routh's Critical Mass Ratio”, Celest. Mech. Dynam. Astronom., 82:2 (2002), 163–177 | DOI | MR | Zbl

[7] Bardin, B. S. and Esipov, P. A., “Investigation of Lyapunov Stability of a Central Configuration in the Restricted Four-Body Problem”, AIP Conf. Proc., 1959:1 (2018), 040004 | DOI

[8] Barwicz, W., Wiliński, M., and Żoła̧dek, H., “Birkhoff Normalization, Bifurcations of Hamiltonian Vector Fields and the Deprits Formula”, J. Fixed Point Theory Appl., 13 (2013), 587–610 | DOI | MR | Zbl

[9] Birkhoff, G. D., Dynamical Systems, Amer. Math. Soc. Colloq. Publ., 9, AMS, Providence, R.I., 1966, 305 pp. | MR

[10] Astron. Zh., 34:1 (1957), 55–74 (Russian) | MR

[11] Broer, H., Hoveijn, I., Lunter, G., and Vegter, V., Bifurcations in Hamiltonian Systems: Computing Singularities by Gröbner Bases, Lect. Notes Math., 1806, Springer, Berlin, 2003, XVI, 172 pp. | DOI | MR

[12] Programmirovanie, 36:2 (2010), 13–20 (Russian) | DOI | MR

[13] Burgos-García, J. and Gidea, M., “Hill's Approximation in a Restricted Four-Body Problem”, Celestial Mech. Dynam. Astronom., 122:2 (2015), 117–141 | DOI | MR | Zbl

[14] Corbera, M., Cors, J. M., and Llibre, J., “On the Central Configurations of the Planar $1+3$ Body Problem”, Celestial Mech. Dynam. Astronom., 109:1 (2011), 7–43 | DOI | MR

[15] Deprit, A. and Deprit-Bartholomé, A., “Stability of the Triangular Lagrangian Points”, Astron. J., 72:2 (1967), 173–179 | DOI

[16] Duistermaat, J. J., “The Monodromy in the Hamiltonian Hopf Bifurcation”, Z. Angew. Math. Phys., 49:1 (1998), 156–161 | DOI | MR | Zbl

[17] Giorgilli, A., Delshams, A., Fontich, E., Galgani, L., and Simó, C., “Effective Stability for a Hamiltonian System near an Elliptic Equilibrium Point, with an Application to the Restricted Three-Body Problem”, J. Differential Equations, 77:1 (1989), 167–198 | DOI | MR | Zbl

[18] Grebenikov, E. A., Kozak-Skoworodkina, D., and Jakubiak, M., Computer Algebra Methods in the Many-Body Problem, RUDN, Moskow, 2001, 209 pp. (Russian) | MR

[19] Howell, K. C. and Spencer, D. B., “Periodic Orbits in the Restricted Four-Body Problem”, Acta Astronaut., 13:8 (1986), 473–479 | DOI | Zbl

[20] Leandro, E. S. G., “On the Central Configurations of the Planar Restricted Four-Body Problem”, J. Differential Equations, 226:1 (2006), 323–351 | DOI | MR | Zbl

[21] Leontovich, A. M., On Stability of the Lagrangian Periodic Solutions of the Restricted Three-Body Problem, Dokl. Akad. Nauk SSSR, 143:3 (1962), 525–528 (Russian) | MR | Zbl

[22] Liu, B. and Zhou, Q., “Linear Stability of Elliptic Relative Equilibria of Restricted Four-Body Problem”, J. Differential Equations, 269:6 (2020), 4751–4798 | DOI | MR | Zbl

[23] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)

[24] Prikl. Mat. Mekh., 62:3 (1998), 372–382 (Russian) | DOI | MR

[25] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 1998, no. 4, 38–49 (Russian)

[26] Prikl. Mat. Mekh., 63:5 (1999), 757–769 (Russian) | DOI | MR | Zbl

[27] Prikl. Mat. Mekh., 75:6 (2011), 901–922 (Russian) | DOI | MR | Zbl

[28] Moser, J. K., Lectures on Hamiltonian Systems, Mem. Amer. Math. Soc., 81, AMS, Providence, R.I., 1968, 60 pp. | MR

[29] Programmirovanie, 38:3 (2012), 65–78 (Russian) | DOI | MR | Zbl

[30] Siegel, C. L. and Moser, J. K., Lectures on Celestial Mechanics, v. 187, Grundlehren Math. Wiss., Springer, New York, 1971, xii+290 pp. | DOI | MR | Zbl

[31] van der Meer, J.-C., “Bifurcation at Non-Semisimple $1:-1$ Resonance”, J. Appl. Math. Phys., 37 (1986), 425–437 | MR | Zbl