Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_4_a1, author = {A. Ligeza and H. Zoladek}, title = {Qualitative {Analysis} of {Some} {Libration} {Points} in the}, journal = {Russian journal of nonlinear dynamics}, pages = {369--390}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_4_a1/} }
A. Ligeza; H. Zoladek. Qualitative Analysis of Some Libration Points in the. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 4, pp. 369-390. http://geodesic.mathdoc.fr/item/ND_2021_17_4_a1/
[1] Arenstorf, R. F., “Central Configurations of Four Bodies with One Inferior Mass”, Celestial Mech., 28:1–2 (1982), 9–15 | DOI | MR | Zbl
[2] Arnol'd, V. I., Mathematical Methods of Classical Mechanics, Grad. Texts in Math., 60, 2nd ed., Springer, New York, 1997, 529 pp. | MR
[3] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl
[4] Baltagiannis, A. N. and Papadakis, K. E., “Equilibrium Points and Their Stability in the Restricted Four-Body Problem”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21:8 (2011), 2179–2193 | DOI | MR | Zbl
[5] Baltaggianis, A. N. and Papadakis, K. N., “Families of Periodic Orbits in the Restricted Four-Body Problem”, Astrophys. Space Sci., 336:2 (2011), 357–367 | DOI | MR
[6] Bardin, B. S., “On Motions near the Lagrange Equilibrium Point $L_4^{}$ in the Case of Routh's Critical Mass Ratio”, Celest. Mech. Dynam. Astronom., 82:2 (2002), 163–177 | DOI | MR | Zbl
[7] Bardin, B. S. and Esipov, P. A., “Investigation of Lyapunov Stability of a Central Configuration in the Restricted Four-Body Problem”, AIP Conf. Proc., 1959:1 (2018), 040004 | DOI
[8] Barwicz, W., Wiliński, M., and Żoła̧dek, H., “Birkhoff Normalization, Bifurcations of Hamiltonian Vector Fields and the Deprits Formula”, J. Fixed Point Theory Appl., 13 (2013), 587–610 | DOI | MR | Zbl
[9] Birkhoff, G. D., Dynamical Systems, Amer. Math. Soc. Colloq. Publ., 9, AMS, Providence, R.I., 1966, 305 pp. | MR
[10] Astron. Zh., 34:1 (1957), 55–74 (Russian) | MR
[11] Broer, H., Hoveijn, I., Lunter, G., and Vegter, V., Bifurcations in Hamiltonian Systems: Computing Singularities by Gröbner Bases, Lect. Notes Math., 1806, Springer, Berlin, 2003, XVI, 172 pp. | DOI | MR
[12] Programmirovanie, 36:2 (2010), 13–20 (Russian) | DOI | MR
[13] Burgos-García, J. and Gidea, M., “Hill's Approximation in a Restricted Four-Body Problem”, Celestial Mech. Dynam. Astronom., 122:2 (2015), 117–141 | DOI | MR | Zbl
[14] Corbera, M., Cors, J. M., and Llibre, J., “On the Central Configurations of the Planar $1+3$ Body Problem”, Celestial Mech. Dynam. Astronom., 109:1 (2011), 7–43 | DOI | MR
[15] Deprit, A. and Deprit-Bartholomé, A., “Stability of the Triangular Lagrangian Points”, Astron. J., 72:2 (1967), 173–179 | DOI
[16] Duistermaat, J. J., “The Monodromy in the Hamiltonian Hopf Bifurcation”, Z. Angew. Math. Phys., 49:1 (1998), 156–161 | DOI | MR | Zbl
[17] Giorgilli, A., Delshams, A., Fontich, E., Galgani, L., and Simó, C., “Effective Stability for a Hamiltonian System near an Elliptic Equilibrium Point, with an Application to the Restricted Three-Body Problem”, J. Differential Equations, 77:1 (1989), 167–198 | DOI | MR | Zbl
[18] Grebenikov, E. A., Kozak-Skoworodkina, D., and Jakubiak, M., Computer Algebra Methods in the Many-Body Problem, RUDN, Moskow, 2001, 209 pp. (Russian) | MR
[19] Howell, K. C. and Spencer, D. B., “Periodic Orbits in the Restricted Four-Body Problem”, Acta Astronaut., 13:8 (1986), 473–479 | DOI | Zbl
[20] Leandro, E. S. G., “On the Central Configurations of the Planar Restricted Four-Body Problem”, J. Differential Equations, 226:1 (2006), 323–351 | DOI | MR | Zbl
[21] Leontovich, A. M., On Stability of the Lagrangian Periodic Solutions of the Restricted Three-Body Problem, Dokl. Akad. Nauk SSSR, 143:3 (1962), 525–528 (Russian) | MR | Zbl
[22] Liu, B. and Zhou, Q., “Linear Stability of Elliptic Relative Equilibria of Restricted Four-Body Problem”, J. Differential Equations, 269:6 (2020), 4751–4798 | DOI | MR | Zbl
[23] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)
[24] Prikl. Mat. Mekh., 62:3 (1998), 372–382 (Russian) | DOI | MR
[25] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 1998, no. 4, 38–49 (Russian)
[26] Prikl. Mat. Mekh., 63:5 (1999), 757–769 (Russian) | DOI | MR | Zbl
[27] Prikl. Mat. Mekh., 75:6 (2011), 901–922 (Russian) | DOI | MR | Zbl
[28] Moser, J. K., Lectures on Hamiltonian Systems, Mem. Amer. Math. Soc., 81, AMS, Providence, R.I., 1968, 60 pp. | MR
[29] Programmirovanie, 38:3 (2012), 65–78 (Russian) | DOI | MR | Zbl
[30] Siegel, C. L. and Moser, J. K., Lectures on Celestial Mechanics, v. 187, Grundlehren Math. Wiss., Springer, New York, 1971, xii+290 pp. | DOI | MR | Zbl
[31] van der Meer, J.-C., “Bifurcation at Non-Semisimple $1:-1$ Resonance”, J. Appl. Math. Phys., 37 (1986), 425–437 | MR | Zbl