Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_3_a7, author = {S. K. Mikhel and A. S. Klimchik}, title = {Stiffness {Model} {Reduction} for {Manipulators} with}, journal = {Russian journal of nonlinear dynamics}, pages = {347--360}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_3_a7/} }
S. K. Mikhel; A. S. Klimchik. Stiffness Model Reduction for Manipulators with. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 347-360. http://geodesic.mathdoc.fr/item/ND_2021_17_3_a7/
[1] Alici, G. and Shirinzadeh, B., “Enhanced Stiffness Modeling, Identification and Characterization for Robot Manipulators”, IEEE Trans. on Robotics, 21:4 (2005), 554–564 | DOI
[2] de Luca, A. and Mattone, R., “Sensorless Robot Collision Detection and Hybrid Force/Motion Control”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Barcelona, Spain, 2005), 999–1004
[3] Deblaise, D., Hernot, X., and Maurine, P., “A Systematic Analytical Method for PKM Stiffness Matrix Calculation”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Orlando, Fla., USA, 2006), 4213–4219
[4] Han, Z., Yuan, J., and Gao, L., “External Force Estimation Method for Robotic Manipulator Based on Double Encoders of Joints”, ROBIO 2018: IEEE Internat. Conf. on Robotics and Biomimetics (Kuala Lumpur, Malaysia, 2018), 1852–1857
[5] Hasegawa, A., Fujimoto, H., and Takahashi, T., “Robot Joint Angle Control Based on Self Resonance Cancellation Using Double Encoders”, IEEE Internat. Conf. on Advanced Intelligent Mechatronics (Munich, Germany, 2017), 460–465
[6] Izumi, T. and Matsuo, T., Robot System and Robot Control Apparatus, Patent US No. 8 849 455 (30 Sep 2014)
[7] Klimchik, A., Furet, B., Caro, S., and Pashkevich, A., “Identification of the Manipulator Stiffness Model Parameters in Industrial Environment”, Mech. Mach. Theory, 90 (2015), 1–22 | DOI
[8] Klimchik, A. and Pashkevich, A., “Robotic Manipulators with Double Encoders: Accuracy Improvement Based on Advanced Stiffness Modeling and Intelligent Control”, IFAC-PapersOnLine, 51:11 (2018), 740–745 | DOI
[9] Klimchik, A., Pashkevich, A., and Chablat, D., “Fundamentals of Manipulator Stiffness Modeling Using Matrix Structural Analysis”, Mech. Mach. Theory, 133 (2019), 365–394 | DOI
[10] Lynch, K. and Park, F., Modern Robotics: Mechanics, Planning, and Control, Cambridge Univ. Press, Cambridge, 2017, 544 pp.
[11] Mamedov, S., Popov, D., Mikhel, S., and Klimchik, A., “Compliance Error Compensation based on Reduced Model for Industrial Robots”, Proc. of the 15th Internat. Conf. on Informatics in Control, Automation and Robotics (ICINCO'2018), v. 2, 180–191
[12] Mamedov, S. and Mikhel, S., “Practical Aspects of Model-Based Collision Detection”, Front. Robot. AI, 7 (2020), 571574, 15 pp. | DOI
[13] Mikhel, S., Popov, D., Mamedov, S., and Klimchik, A., “Advancement of Robots with Double Encoders for Industrial and Collaborative Applications”, Proc. of the 23rd Conf. of FRUCT Association (Bologna, Italy, 2018), 246–252
[14] Mikhel, S. and Klimchik, A., “Algebraic Approach to the Stiffness Model Reduction for Manipulators with Double Encoders”, Internat. Conf. “Nonlinearity, Information and Robotics” (Innopolis, Russia, 2020), 1–6
[15] Pashkevich, A., Chablat, D., and Wenger, P., “Stiffness Analysis of Overconstrained Parallel Manipulators”, Mech. Mach. Theory, 44:5 (2009), 966–982 | DOI | Zbl
[16] Pashkevich, A., Klimchik, A., and Chablat, D., “Nonlinear Effect in Stiffness Modeling of Robotic Manipulators”, World Acad. Sci. Eng. Technol.. 58 (2009), 168–173
[17] Piras, G., Cleghorn, W., and Mills, J., “Dynamic Finite-Element Analysis of a Planar High-Speed, High-Precision Parallel Manipulator with Flexible Links”, Mech. Mach. Theory, 40:7 (2005), 849–862 | DOI | Zbl
[18] Popov, D. I. and Klimchik, A. S., “Stiffness Modeling for Anthropomorphic Robots”, Comput. Res. Model., 11:4 (2019), 631–651 | DOI
[19] Tsai, J., Wong, E., Tao, J., McGee, H. D., and Akeel, H., Secondary Position Feedback Control of a Robot, Patent US No. 8 473 103, 2013
[20] Sakata, K., Asaumi, H., Hirachi, K., Saiki, K., and Fujimoto, H., “Self Resonance Cancellation Techniques for a Two-Mass System and Its Application to a Large-Scale Stage”, IEEJ J. Ind. Appl., 3:6 (2014), 455–462
[21] Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G., Robotics: Modelling, Planning and Control, Springer, London, 2010, xxiv, 632 pp.
[22] } {\tt https://github.com/mikhel1984/algebraic_approach