Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_3_a5, author = {M. K. Barinova and E. Y. Gogulina and O. V. Pochinka}, title = {Omega-classification of {Surface} {Diffeomorphisms}}, journal = {Russian journal of nonlinear dynamics}, pages = {321--334}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_3_a5/} }
TY - JOUR AU - M. K. Barinova AU - E. Y. Gogulina AU - O. V. Pochinka TI - Omega-classification of Surface Diffeomorphisms JO - Russian journal of nonlinear dynamics PY - 2021 SP - 321 EP - 334 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2021_17_3_a5/ LA - en ID - ND_2021_17_3_a5 ER -
M. K. Barinova; E. Y. Gogulina; O. V. Pochinka. Omega-classification of Surface Diffeomorphisms. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 321-334. http://geodesic.mathdoc.fr/item/ND_2021_17_3_a5/
[1] Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | Zbl
[2] Birkhoff, G., Lattice Theory, AMS Coll. Publ., 25, 3rd ed., AMS, Providence, R.I., 1967, vi+418 pp. | Zbl
[3] Vogt, H. G., Leçons sur la résolution algébrique des équations, Nony, Paris, 1895, 220 pp.
[4] Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., v. 54, Cambridge Univ. Press, Cambridge, 1995, 802 pp.
[5] Barinova, M., Grines, V., Pochinka, O., and Yu, B., “Existence of an Energy Function for Three-Dimensional Chaotic “Sink-Source” Cascades”, Chaos, 31:6 (2021), 063112, 8 pp. | DOI | Zbl
[6] Williams, R. F., “The “DA” Maps of Smale and Structural Stability”, Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968), v. 14, AMS, Providence, R.I., 1970, 329–334 | DOI
[7] Franks, J., “Anosov Diffeomorphisms”, Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968), v. 14, AMS, Providence, R.I., 1970, 61–93 | DOI
[8] Funktsional. Anal. i Prilozhen., 2:1 (1968), 64–89 (Russian) | DOI | Zbl
[9] Newhouse, S., “On Codimension One Anosov Diffeomorphisms”, Amer. J. Math., 92:3 (1970), 761–770 | DOI | Zbl
[10] Grines, V. Z., “The Topological Conjugacy of Diffeomorphisms of a Two-Dimensional Manifold on One-Dimensional Orientable Basic Sets: 2”, Tr. Mosk. Mat. Obs., 34 (1977), 243–252 (Russian) | Zbl
[11] Grines, V., Medvedev, T., and Pochinka, O., Dynamical Systems on $2$- and $3$-Manifolds, Dev. Math., 46, Springer, New York, 2016, xxvi, 295 pp. | Zbl
[12] Palis, J. Jr. and de Melo, W., Geometric Theory of Dynamical Systems: An Introduction, Springer, New York, 1982, XII, 198 pp. | Zbl
[13] Barinova, M., Gogulina, E., and Pochinka, O., “Realization of the Acyclic Smale Diagram by\linebreak an $\Omega$-Stable Surface Diffeomorphism”, Ogarev-Online, 2020, 13, 10 pp. (Russian)