Omega-classification of Surface Diffeomorphisms
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 321-334.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper gives a partial answer to Smale's question which diagrams can correspond to $(A,B)$-diffeomorphisms. Model diffeomorphisms of the two-dimensional torus derived by “Smale surgery” are considered, and necessary and sufficient conditions for their topological conjugacy are found. Also, a class $G$ of $(A,B)$-diffeomorphisms on surfaces which are the connected sum of the model diffeomorphisms is introduced. Diffeomorphisms of the class $G$ realize any connected Hasse diagrams (abstract Smale graph). Examples of diffeomorphisms from $G$ with isomorphic labeled Smale diagrams which are not ambiently $\Omega$-conjugated are constructed. Moreover, a subset $G_{*}^{} \subset G$ of diffeomorphisms for which the isomorphism class of labeled Smale diagrams is a complete invariant of the ambient $\Omega$-conjugacy is singled out.
Keywords: Smale diagram, (A,B)-diffeomorphism, $\Omega$-conjugacy.
@article{ND_2021_17_3_a5,
     author = {M. K. Barinova and E. Y. Gogulina and O. V. Pochinka},
     title = {Omega-classification of {Surface} {Diffeomorphisms}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {321--334},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_3_a5/}
}
TY  - JOUR
AU  - M. K. Barinova
AU  - E. Y. Gogulina
AU  - O. V. Pochinka
TI  - Omega-classification of Surface Diffeomorphisms
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 321
EP  - 334
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_3_a5/
LA  - en
ID  - ND_2021_17_3_a5
ER  - 
%0 Journal Article
%A M. K. Barinova
%A E. Y. Gogulina
%A O. V. Pochinka
%T Omega-classification of Surface Diffeomorphisms
%J Russian journal of nonlinear dynamics
%D 2021
%P 321-334
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_3_a5/
%G en
%F ND_2021_17_3_a5
M. K. Barinova; E. Y. Gogulina; O. V. Pochinka. Omega-classification of Surface Diffeomorphisms. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 321-334. http://geodesic.mathdoc.fr/item/ND_2021_17_3_a5/

[1] Smale, S., “Differentiable Dynamical Systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | Zbl

[2] Birkhoff, G., Lattice Theory, AMS Coll. Publ., 25, 3rd ed., AMS, Providence, R.I., 1967, vi+418 pp. | Zbl

[3] Vogt, H. G., Leçons sur la résolution algébrique des équations, Nony, Paris, 1895, 220 pp.

[4] Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., v. 54, Cambridge Univ. Press, Cambridge, 1995, 802 pp.

[5] Barinova, M., Grines, V., Pochinka, O., and Yu, B., “Existence of an Energy Function for Three-Dimensional Chaotic “Sink-Source” Cascades”, Chaos, 31:6 (2021), 063112, 8 pp. | DOI | Zbl

[6] Williams, R. F., “The “DA” Maps of Smale and Structural Stability”, Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968), v. 14, AMS, Providence, R.I., 1970, 329–334 | DOI

[7] Franks, J., “Anosov Diffeomorphisms”, Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968), v. 14, AMS, Providence, R.I., 1970, 61–93 | DOI

[8] Funktsional. Anal. i Prilozhen., 2:1 (1968), 64–89 (Russian) | DOI | Zbl

[9] Newhouse, S., “On Codimension One Anosov Diffeomorphisms”, Amer. J. Math., 92:3 (1970), 761–770 | DOI | Zbl

[10] Grines, V. Z., “The Topological Conjugacy of Diffeomorphisms of a Two-Dimensional Manifold on One-Dimensional Orientable Basic Sets: 2”, Tr. Mosk. Mat. Obs., 34 (1977), 243–252 (Russian) | Zbl

[11] Grines, V., Medvedev, T., and Pochinka, O., Dynamical Systems on $2$- and $3$-Manifolds, Dev. Math., 46, Springer, New York, 2016, xxvi, 295 pp. | Zbl

[12] Palis, J. Jr. and de Melo, W., Geometric Theory of Dynamical Systems: An Introduction, Springer, New York, 1982, XII, 198 pp. | Zbl

[13] Barinova, M., Gogulina, E., and Pochinka, O., “Realization of the Acyclic Smale Diagram by\linebreak an $\Omega$-Stable Surface Diffeomorphism”, Ogarev-Online, 2020, 13, 10 pp. (Russian)