Asynchronous Chaos and Bifurcations in a Model of
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 307-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a minimal network of two coupled neurons described by the Hindmarsh – Rose model with a linear coupling. We suppose that individual neurons are identical and study whether the dynamical regimes of a single neuron would be stable synchronous regimes in the model of two coupled neurons. We find that among synchronous regimes only regular periodic spiking and quiescence are stable in a certain range of parameters, while no bursting synchronous regimes are stable. Moreover, we show that there are no stable synchronous chaotic regimes in the parameter range considered. On the other hand, we find a wide range of parameters in which a stable asynchronous chaotic regime exists. Furthermore, we identify narrow regions of bistability, when synchronous and asynchronous regimes coexist. However, the asynchronous attractor is monostable in a wide range of parameters. We demonstrate that the onset of the asynchronous chaotic attractor occurs according to the Afraimovich – Shilnikov scenario. We have observed various asynchronous firing patterns: irregular quasi-periodic and chaotic spiking, both regular and chaotic bursting regimes, in which the number of spikes per burst varied greatly depending on the control parameter.
Keywords: synchronization, Hindmarsh – Rose, bursting.
Mots-clés : coupled neurons, chaos
@article{ND_2021_17_3_a4,
     author = {I. R. Garashchuk},
     title = {Asynchronous {Chaos} and {Bifurcations} in a {Model} of},
     journal = {Russian journal of nonlinear dynamics},
     pages = {307--320},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_3_a4/}
}
TY  - JOUR
AU  - I. R. Garashchuk
TI  - Asynchronous Chaos and Bifurcations in a Model of
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 307
EP  - 320
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_3_a4/
LA  - en
ID  - ND_2021_17_3_a4
ER  - 
%0 Journal Article
%A I. R. Garashchuk
%T Asynchronous Chaos and Bifurcations in a Model of
%J Russian journal of nonlinear dynamics
%D 2021
%P 307-320
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_3_a4/
%G en
%F ND_2021_17_3_a4
I. R. Garashchuk. Asynchronous Chaos and Bifurcations in a Model of. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 307-320. http://geodesic.mathdoc.fr/item/ND_2021_17_3_a4/

[1] Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, Cambridge, Mass., 2007, xvi+441 pp.

[2] Izhikevich, E. M., Desai, N. S., Walcott, E. C., and Hoppensteadt, F. C., “Bursts As a Unit of Neural Information: Selective Communication via Resonance”, Trends Neurosci., 26:3 (2003), 161–167 | DOI

[3] Izhikevich, E. M., “Neural Excitability, Spiking and Bursting”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10:6 (2000), 1171–1266 | DOI | Zbl

[4] Bursting: The Genesis of Rhythm in the Nervous System, eds. S. Coombes, P. C. Bressloff, World Sci., Singapore, 2005, 420 pp. | Zbl

[5] Lisman, J. E., “Bursts As a Unit of Neural Information: Making Unreliable Synapses Reliable”, Trends Neurosci., 20:1 (1997), 38–43 | DOI

[6] Hindmarsh, J. L. and Rose, R. M., “A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations”, Proc. R. Soc. Lond. Ser. B Biol. Sci., 221:1222 (1984), 87–102

[7] Hodgkin, A. L. and Huxley, A. F., “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”, J. Physiol., 117:4 (1952), 500–544 | DOI

[8] Shilnikov, A. and Kolomiets, M., “Methods of the Qualitative Theory for the Hindmarsh – Rose Model: A Case Study. A Tutorial”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:8 (2008), 2141–2168 | DOI | Zbl

[9] Barrio, R., Angeles Martínez, M., Serrano, S., and Shilnikov, A., “Macro- and Micro-Chaotic Structures in the Hindmarsh – Rose Model of Bursting Neurons”, Chaos, 24:2 (2014), 123128, 11 pp.

[10] Rosenblum, M. G. and Pikovsky, A. S., “Controlling Synchronization in an Ensemble of Globally Coupled Oscillators”, Phys. Rev. Lett., 92:11 (2004), 114102, 4 pp. | DOI

[11] Pikovsky, A., Rosenblum, M., and Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Sci. Ser., 12, Cambridge Univ. Press, New York, 2001, 432 pp. | Zbl

[12] Izhikevich, E. M., “Which Model to Use for Cortical Spiking Neurons?”, IEEE Trans. Neural Netw., 15:5 (2004), 1063–1070 | DOI

[13] Innocenti, G., Morelli, A., Genesio, R., and Torcini, A., “Dynamical Phases of the Hindmarsh – Rose Neuronal Model: Studies of the Transition from Bursting to Spiking Chaos”, Chaos, 17:4 (2007), 043128, 11 pp. | DOI | Zbl

[14] Huerta, R., Rabinovich, M. I., Abarbanel, H. D. I., and Bazhenov, M., “Spike-Train Bifurcation Scaling in Two Coupled Chaotic Neurons”, Phys. Rev. E., 55:5 (1997), R2108–R2110 | DOI

[15] Holden, A. V. and Fan, Y.-Sh., “From Simple to Simple Bursting Oscillatory Behaviour via Chaos in the Rose – Hindmarsh Model for Neuronal Activity”, Chaos Solitons Fractals, 2:3 (1992), 221–236 | DOI | Zbl

[16] “Multistability in Networks of Hindmarsh – Rose Neurons”, Phys. Rev. E, 78:6 (Erichsen, R. and Brunnet, L. G.), 061917, 6 pp. | DOI

[17] Malashchenko, T., Shilnikov, A., and Cymbalyuk, G., Six Types of Multistability in a Neuronal Model Based on Slow Calcium Current, PLoS One, 6:7 (2011), e21782, 10 pp. | DOI

[18] Sacramento, J. F., Chew, D. J., Melo, B. F., Donega, M., Dopson, W., Guarino, M. P., Robinson, A., Prieto-Lloret, J., Patel, S., Holinski, B. J., Ramnarain, N., Pikov, V.,Famm, K., and Conde, S. V., “Bioelectronic Modulation of Carotid Sinus Nerve Activity in the Rat: A Potential Therapeutic Approach for Type $2$ Diabetes”, Diabetologia, 61 (2018), 700–710 | DOI

[19] Castanedo-Guerra, I. T., Steur, E., and Nijmeijer, H., “Synchronization of Coupled Hindmarsh – Rose Neurons: Effects of an Exogenous Parameter”, IFAC-PapersOnLine, 49:14 (2016), 84–89 | DOI

[20] Yu, H. and Peng, J., “Chaotic Synchronization and Control in Nonlinear-Coupled Hindmarsh – Rose Neural Systems”, Chaos Solitons Fractals, 29:2 (2006), 342–348 | DOI | Zbl

[21] Etémé, A. S., Tabi, C. B., and Mohamadou, A., “Synchronized Nonlinear Patterns in Electrically Coupled Hindmarsh – Rose Neural Networks with Long-Range Diffusive Interactions”, Chaos Solitons Fractals, 104 (2017), 813–826 | DOI | Zbl

[22] Zoli, M., Torri, C., Ferrari, R., Jansson, A., Zini, I., Fuxe, K., and Agnati, L. F., “The Emergence of the Volume Transmission Concept”, Brain Res. Rev., 26:2–3 (1998), 136–147 | DOI

[23] Etémé, A. S., Tabi, C. B., and Mohamadou, A., “Long-Range Patterns in Hindmarsh – Rose Networks”, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 211–219 | DOI | Zbl

[24] Klopfenstein, R. W., “Numerical Differentiation Formulas for Stiff Systems of Ordinary Differential Equations”, RCA Rev., 32 (1971), 447–462

[25] Shampine, L. F. and Reichelt, M. W., The MATLAB ODE Suite: Dedicated to C. William Gear on the Occasion of His 60th Birthday, SIAM J. Sci. Comput., 18:1 (1997), 1–22 | DOI | Zbl

[26] Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory”, Meccanica, 15:1 (1980), 9–20 | DOI | Zbl

[27] Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N. V., Leonov, G. A., and Prasad, A., “Hidden Attractors in Dynamical Systems”, Phys. Rep., 637 (2016), 1–50 | DOI | Zbl

[28] Methods of Qualitative Theory of Differential Equations, ed. E. A. Leontovich-Andronova, Gorky Gos. Univ., Gorky, 1983 (Russian) | Zbl

[29] Garashchuk, I. R., Sinelshchikov, D. I., Kazakov, A. O., and Kudryashov, N. A., “Hyperchaos and Multistability in the Model of Two Interacting Microbubble Contrast Agents”, Chaos, 29:6 (2019), 063131, 16 pp. | DOI | Zbl

[30] Stankevich, N. V., Dvorak, A., Astakhov, V., Jaros, P., Kapitaniak, M., Perlikowski, P., and Kapitaniak, T., “Chaos and Hyperchaos in Coupled Antiphase Driven Toda Oscillators,”, Regul. Chaotic Dyn., 23:1 (2018), 120–126 | DOI | Zbl