Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_3_a4, author = {I. R. Garashchuk}, title = {Asynchronous {Chaos} and {Bifurcations} in a {Model} of}, journal = {Russian journal of nonlinear dynamics}, pages = {307--320}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_3_a4/} }
I. R. Garashchuk. Asynchronous Chaos and Bifurcations in a Model of. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 307-320. http://geodesic.mathdoc.fr/item/ND_2021_17_3_a4/
[1] Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, Cambridge, Mass., 2007, xvi+441 pp.
[2] Izhikevich, E. M., Desai, N. S., Walcott, E. C., and Hoppensteadt, F. C., “Bursts As a Unit of Neural Information: Selective Communication via Resonance”, Trends Neurosci., 26:3 (2003), 161–167 | DOI
[3] Izhikevich, E. M., “Neural Excitability, Spiking and Bursting”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10:6 (2000), 1171–1266 | DOI | Zbl
[4] Bursting: The Genesis of Rhythm in the Nervous System, eds. S. Coombes, P. C. Bressloff, World Sci., Singapore, 2005, 420 pp. | Zbl
[5] Lisman, J. E., “Bursts As a Unit of Neural Information: Making Unreliable Synapses Reliable”, Trends Neurosci., 20:1 (1997), 38–43 | DOI
[6] Hindmarsh, J. L. and Rose, R. M., “A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations”, Proc. R. Soc. Lond. Ser. B Biol. Sci., 221:1222 (1984), 87–102
[7] Hodgkin, A. L. and Huxley, A. F., “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”, J. Physiol., 117:4 (1952), 500–544 | DOI
[8] Shilnikov, A. and Kolomiets, M., “Methods of the Qualitative Theory for the Hindmarsh – Rose Model: A Case Study. A Tutorial”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:8 (2008), 2141–2168 | DOI | Zbl
[9] Barrio, R., Angeles Martínez, M., Serrano, S., and Shilnikov, A., “Macro- and Micro-Chaotic Structures in the Hindmarsh – Rose Model of Bursting Neurons”, Chaos, 24:2 (2014), 123128, 11 pp.
[10] Rosenblum, M. G. and Pikovsky, A. S., “Controlling Synchronization in an Ensemble of Globally Coupled Oscillators”, Phys. Rev. Lett., 92:11 (2004), 114102, 4 pp. | DOI
[11] Pikovsky, A., Rosenblum, M., and Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Sci. Ser., 12, Cambridge Univ. Press, New York, 2001, 432 pp. | Zbl
[12] Izhikevich, E. M., “Which Model to Use for Cortical Spiking Neurons?”, IEEE Trans. Neural Netw., 15:5 (2004), 1063–1070 | DOI
[13] Innocenti, G., Morelli, A., Genesio, R., and Torcini, A., “Dynamical Phases of the Hindmarsh – Rose Neuronal Model: Studies of the Transition from Bursting to Spiking Chaos”, Chaos, 17:4 (2007), 043128, 11 pp. | DOI | Zbl
[14] Huerta, R., Rabinovich, M. I., Abarbanel, H. D. I., and Bazhenov, M., “Spike-Train Bifurcation Scaling in Two Coupled Chaotic Neurons”, Phys. Rev. E., 55:5 (1997), R2108–R2110 | DOI
[15] Holden, A. V. and Fan, Y.-Sh., “From Simple to Simple Bursting Oscillatory Behaviour via Chaos in the Rose – Hindmarsh Model for Neuronal Activity”, Chaos Solitons Fractals, 2:3 (1992), 221–236 | DOI | Zbl
[16] “Multistability in Networks of Hindmarsh – Rose Neurons”, Phys. Rev. E, 78:6 (Erichsen, R. and Brunnet, L. G.), 061917, 6 pp. | DOI
[17] Malashchenko, T., Shilnikov, A., and Cymbalyuk, G., Six Types of Multistability in a Neuronal Model Based on Slow Calcium Current, PLoS One, 6:7 (2011), e21782, 10 pp. | DOI
[18] Sacramento, J. F., Chew, D. J., Melo, B. F., Donega, M., Dopson, W., Guarino, M. P., Robinson, A., Prieto-Lloret, J., Patel, S., Holinski, B. J., Ramnarain, N., Pikov, V.,Famm, K., and Conde, S. V., “Bioelectronic Modulation of Carotid Sinus Nerve Activity in the Rat: A Potential Therapeutic Approach for Type $2$ Diabetes”, Diabetologia, 61 (2018), 700–710 | DOI
[19] Castanedo-Guerra, I. T., Steur, E., and Nijmeijer, H., “Synchronization of Coupled Hindmarsh – Rose Neurons: Effects of an Exogenous Parameter”, IFAC-PapersOnLine, 49:14 (2016), 84–89 | DOI
[20] Yu, H. and Peng, J., “Chaotic Synchronization and Control in Nonlinear-Coupled Hindmarsh – Rose Neural Systems”, Chaos Solitons Fractals, 29:2 (2006), 342–348 | DOI | Zbl
[21] Etémé, A. S., Tabi, C. B., and Mohamadou, A., “Synchronized Nonlinear Patterns in Electrically Coupled Hindmarsh – Rose Neural Networks with Long-Range Diffusive Interactions”, Chaos Solitons Fractals, 104 (2017), 813–826 | DOI | Zbl
[22] Zoli, M., Torri, C., Ferrari, R., Jansson, A., Zini, I., Fuxe, K., and Agnati, L. F., “The Emergence of the Volume Transmission Concept”, Brain Res. Rev., 26:2–3 (1998), 136–147 | DOI
[23] Etémé, A. S., Tabi, C. B., and Mohamadou, A., “Long-Range Patterns in Hindmarsh – Rose Networks”, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 211–219 | DOI | Zbl
[24] Klopfenstein, R. W., “Numerical Differentiation Formulas for Stiff Systems of Ordinary Differential Equations”, RCA Rev., 32 (1971), 447–462
[25] Shampine, L. F. and Reichelt, M. W., The MATLAB ODE Suite: Dedicated to C. William Gear on the Occasion of His 60th Birthday, SIAM J. Sci. Comput., 18:1 (1997), 1–22 | DOI | Zbl
[26] Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory”, Meccanica, 15:1 (1980), 9–20 | DOI | Zbl
[27] Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N. V., Leonov, G. A., and Prasad, A., “Hidden Attractors in Dynamical Systems”, Phys. Rep., 637 (2016), 1–50 | DOI | Zbl
[28] Methods of Qualitative Theory of Differential Equations, ed. E. A. Leontovich-Andronova, Gorky Gos. Univ., Gorky, 1983 (Russian) | Zbl
[29] Garashchuk, I. R., Sinelshchikov, D. I., Kazakov, A. O., and Kudryashov, N. A., “Hyperchaos and Multistability in the Model of Two Interacting Microbubble Contrast Agents”, Chaos, 29:6 (2019), 063131, 16 pp. | DOI | Zbl
[30] Stankevich, N. V., Dvorak, A., Astakhov, V., Jaros, P., Kapitaniak, M., Perlikowski, P., and Kapitaniak, T., “Chaos and Hyperchaos in Coupled Antiphase Driven Toda Oscillators,”, Regul. Chaotic Dyn., 23:1 (2018), 120–126 | DOI | Zbl