A Sphere Held Fixed in a Poiseuille Flow
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 289-306.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present here an analytical calculation of the hydrodynamic interactions between a smooth spherical particle held fixed in a Poiseuille flow and a rough wall. By the assumption of a low Reynolds number, the flow around a fixed spherical particle is described by the Stokes equations. The surface of the rigid wall has periodic corrugations, with small amplitude compared with the sphere radius. The asymptotic development coupled with the Lorentz reciprocal theorem are used to find the analytical solution of the couple, lift and drag forces exerted on the particle, generated by the second-order flow due to the wall roughness. These hydrodynamic effects are evaluated in terms of amplitude and period of roughness and also in terms of the distance between sphere and wall.
Keywords: lift force, drag force, rough wall, Stokes equations, asymptotic development, Lorentz reciprocal theorem.
Mots-clés : Poiseuille flow
@article{ND_2021_17_3_a3,
     author = {K. Lamzoud and R. Assoudi and F. Bouisfi and M. Chaoui},
     title = {A {Sphere} {Held} {Fixed} in a {Poiseuille} {Flow}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {289--306},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_3_a3/}
}
TY  - JOUR
AU  - K. Lamzoud
AU  - R. Assoudi
AU  - F. Bouisfi
AU  - M. Chaoui
TI  - A Sphere Held Fixed in a Poiseuille Flow
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 289
EP  - 306
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_3_a3/
LA  - en
ID  - ND_2021_17_3_a3
ER  - 
%0 Journal Article
%A K. Lamzoud
%A R. Assoudi
%A F. Bouisfi
%A M. Chaoui
%T A Sphere Held Fixed in a Poiseuille Flow
%J Russian journal of nonlinear dynamics
%D 2021
%P 289-306
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_3_a3/
%G en
%F ND_2021_17_3_a3
K. Lamzoud; R. Assoudi; F. Bouisfi; M. Chaoui. A Sphere Held Fixed in a Poiseuille Flow. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 289-306. http://geodesic.mathdoc.fr/item/ND_2021_17_3_a3/

[1] Pasol, L., Martin, M., Ekiel-Jeżewska, M. L., Wajnryb, E., “Bławzdziewicz, J., and Feuillebois, F., Motion of Sphere Parallel to Plane Walls in a Poiseuille Flow. Application to Field-Flow Fractionation and Hydrodynamic Chromatography”, Chem. Eng. Sci., 66:18 (2011), 4078–4089 | DOI

[2] Ho, B. P. and Leal, L. G., “Inertial Migration of Rigid Spheres in Two-Dimensional Unidirectional Flows”, J. Fluid Mech., 65:2 (1974), 365–400 | DOI | Zbl

[3] Clague, D. S. and Cornelius, P. J., “The Hydrodynamic Force and Torque on a Bounded Sphere in Poiseuille Flow”, Int. J. Numer. Methods Fluids, 35:1 (2001), 55–70 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[4] Staben, M. E., Zinchenko, A. Z., and Davis, R. H., “Motion of a Particle between Two Parallel Plane Walls in Low-Reynolds-Number Poiseuille Flow”, Phys. Fluids, 15:6 (2003), 1711–1733 | DOI

[5] Staben, M. E. and Davis, R. H., “Particle Transport in Poiseuille Flow in Narrow Channels”, Int. J. Multiph. Flow, 31:5 (2005), 529–547 | DOI | Zbl

[6] Bhattacharya, S., Bławzdziewicz, J., and Wajnryb, E., “Many-Particle Hydrodynamic Interactions in Parallel-Wall Geometry: Cartesian-Representation Method”, Phys. A, 356:2–4 (2005), 294–340 | DOI

[7] Bhattacharya, S., Bławzdziewicz, J., and Wajnryb, E., “Hydrodynamic Interactions of Spherical Particles in Poiseuille Flow between Two Parallel Walls”, Phys. Fluids, 18:5 (2006), 053301, 20 pp. | DOI | Zbl

[8] O'Neill, M. E., “A Slow Motion of Viscous Liquid Caused by a Slowly Moving Solid Sphere”, Mathematika, 11:1 (1964), 67–74 | DOI

[9] Tözeren, A. and Skalak, R., “Stress in a Suspension near Rigid Boundaries”, J. Fluid Mech., 82:2 (1977), 289–307 | DOI | Zbl

[10] Chaoui, M. and Feuillebois, F., “Creeping Flow around a Sphere in a Shear Flow Close to a Wall”, Q. J. Mech. Appl. Math., 56:3 (2003), 381–410 | DOI | Zbl

[11] “A Sphere in a Second Degree Polynomial Creeping Flow Parallel to a Wall”, Q. J. Mech. Appl. Math., 59:4 (Pasol, L., Sellier, A., and Feuillebois F.), 587–614 | DOI

[12] Smart, J. R. and Leighton, Jr., D. T., “Measurement of the Hydrodynamic Surface Roughness of Noncolloidal Spheres”, Phys. Fluids A, 1:1 (1989), 52–60 | DOI

[13] Smart, J. R., Beimfohr, S., and Leighton, Jr., D. T., “Measurement of the Translational and Rotational Velocities of a Noncolloidal Sphere Rolling Down a Smooth Inclined Plane at Low Reynolds Number”, Phys. Fluids A, 5:1 (1993), 13–24 | DOI

[14] Kunert, C., Harting, J., and Vinogradova, O. I., “Random-Roughness Hydrodynamic Boundary Conditions”, Phys. Rev. Lett., 105:1 (2010), 016001, 4 pp. | DOI

[15] Assoudi, R., Lamzoud, K., and Chaoui, M., “Influence of the Wall Roughness on a Linear Shear Flow”, FME Trans., 46:2 (2019), 272–277

[16] Assoudi, R., Chaoui, M., Feuillebois, F., and Allouche, H., “Motion of a Spherical Particle along a Rough Wall in a Shear Flow”, Z. Angew. Math. Phys., 69:5 (2018), 1–30 | DOI

[17] Lamzoud, K., Assoudi, R., Bouisfi, F., and Chaoui, M., “A Spherical Particle Settling towards a Corrugated Wall”, Russian J. Nonlinear Dyn., 15:2 (2019), 125–134 | Zbl

[18] Lorentz, H. A., “A General Theorem Concerning the Motion of a Viscous Fluid and a Few Consequences Derived from It”, Zittingsverlag Akad. Wet. Amsterdam, 5 (1896), 168–175 | Zbl

[19] Springer, The Centenary of a Paper on Slow Viscous Flow by the Physicist H. A. Lorentz, ed. H.K. Kuiken, Dordrecht, 1996, 312 pp.

[20] Lecoq, N., “Boundary Conditions for Creeping Flow along Periodic or Random Rough Surfaces, Experimental and Theoretical Results”, J. Phys. Conf. Ser., 392:1 (2012), 012010, 19 pp. | DOI

[21] Pasol, L., Chaoui, M., Yahiaoui, S., and Feuillebois, F., “Analytical Solution for a Spherical Particle near a Wall in Axisymmetrical Polynomial Creeping Flows”, Phys. Fluids, 17:7 (2005), 073602, 13 pp. | DOI | Zbl