Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_3_a3, author = {K. Lamzoud and R. Assoudi and F. Bouisfi and M. Chaoui}, title = {A {Sphere} {Held} {Fixed} in a {Poiseuille} {Flow}}, journal = {Russian journal of nonlinear dynamics}, pages = {289--306}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_3_a3/} }
TY - JOUR AU - K. Lamzoud AU - R. Assoudi AU - F. Bouisfi AU - M. Chaoui TI - A Sphere Held Fixed in a Poiseuille Flow JO - Russian journal of nonlinear dynamics PY - 2021 SP - 289 EP - 306 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2021_17_3_a3/ LA - en ID - ND_2021_17_3_a3 ER -
K. Lamzoud; R. Assoudi; F. Bouisfi; M. Chaoui. A Sphere Held Fixed in a Poiseuille Flow. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 289-306. http://geodesic.mathdoc.fr/item/ND_2021_17_3_a3/
[1] Pasol, L., Martin, M., Ekiel-Jeżewska, M. L., Wajnryb, E., “Bławzdziewicz, J., and Feuillebois, F., Motion of Sphere Parallel to Plane Walls in a Poiseuille Flow. Application to Field-Flow Fractionation and Hydrodynamic Chromatography”, Chem. Eng. Sci., 66:18 (2011), 4078–4089 | DOI
[2] Ho, B. P. and Leal, L. G., “Inertial Migration of Rigid Spheres in Two-Dimensional Unidirectional Flows”, J. Fluid Mech., 65:2 (1974), 365–400 | DOI | Zbl
[3] Clague, D. S. and Cornelius, P. J., “The Hydrodynamic Force and Torque on a Bounded Sphere in Poiseuille Flow”, Int. J. Numer. Methods Fluids, 35:1 (2001), 55–70 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[4] Staben, M. E., Zinchenko, A. Z., and Davis, R. H., “Motion of a Particle between Two Parallel Plane Walls in Low-Reynolds-Number Poiseuille Flow”, Phys. Fluids, 15:6 (2003), 1711–1733 | DOI
[5] Staben, M. E. and Davis, R. H., “Particle Transport in Poiseuille Flow in Narrow Channels”, Int. J. Multiph. Flow, 31:5 (2005), 529–547 | DOI | Zbl
[6] Bhattacharya, S., Bławzdziewicz, J., and Wajnryb, E., “Many-Particle Hydrodynamic Interactions in Parallel-Wall Geometry: Cartesian-Representation Method”, Phys. A, 356:2–4 (2005), 294–340 | DOI
[7] Bhattacharya, S., Bławzdziewicz, J., and Wajnryb, E., “Hydrodynamic Interactions of Spherical Particles in Poiseuille Flow between Two Parallel Walls”, Phys. Fluids, 18:5 (2006), 053301, 20 pp. | DOI | Zbl
[8] O'Neill, M. E., “A Slow Motion of Viscous Liquid Caused by a Slowly Moving Solid Sphere”, Mathematika, 11:1 (1964), 67–74 | DOI
[9] Tözeren, A. and Skalak, R., “Stress in a Suspension near Rigid Boundaries”, J. Fluid Mech., 82:2 (1977), 289–307 | DOI | Zbl
[10] Chaoui, M. and Feuillebois, F., “Creeping Flow around a Sphere in a Shear Flow Close to a Wall”, Q. J. Mech. Appl. Math., 56:3 (2003), 381–410 | DOI | Zbl
[11] “A Sphere in a Second Degree Polynomial Creeping Flow Parallel to a Wall”, Q. J. Mech. Appl. Math., 59:4 (Pasol, L., Sellier, A., and Feuillebois F.), 587–614 | DOI
[12] Smart, J. R. and Leighton, Jr., D. T., “Measurement of the Hydrodynamic Surface Roughness of Noncolloidal Spheres”, Phys. Fluids A, 1:1 (1989), 52–60 | DOI
[13] Smart, J. R., Beimfohr, S., and Leighton, Jr., D. T., “Measurement of the Translational and Rotational Velocities of a Noncolloidal Sphere Rolling Down a Smooth Inclined Plane at Low Reynolds Number”, Phys. Fluids A, 5:1 (1993), 13–24 | DOI
[14] Kunert, C., Harting, J., and Vinogradova, O. I., “Random-Roughness Hydrodynamic Boundary Conditions”, Phys. Rev. Lett., 105:1 (2010), 016001, 4 pp. | DOI
[15] Assoudi, R., Lamzoud, K., and Chaoui, M., “Influence of the Wall Roughness on a Linear Shear Flow”, FME Trans., 46:2 (2019), 272–277
[16] Assoudi, R., Chaoui, M., Feuillebois, F., and Allouche, H., “Motion of a Spherical Particle along a Rough Wall in a Shear Flow”, Z. Angew. Math. Phys., 69:5 (2018), 1–30 | DOI
[17] Lamzoud, K., Assoudi, R., Bouisfi, F., and Chaoui, M., “A Spherical Particle Settling towards a Corrugated Wall”, Russian J. Nonlinear Dyn., 15:2 (2019), 125–134 | Zbl
[18] Lorentz, H. A., “A General Theorem Concerning the Motion of a Viscous Fluid and a Few Consequences Derived from It”, Zittingsverlag Akad. Wet. Amsterdam, 5 (1896), 168–175 | Zbl
[19] Springer, The Centenary of a Paper on Slow Viscous Flow by the Physicist H. A. Lorentz, ed. H.K. Kuiken, Dordrecht, 1996, 312 pp.
[20] Lecoq, N., “Boundary Conditions for Creeping Flow along Periodic or Random Rough Surfaces, Experimental and Theoretical Results”, J. Phys. Conf. Ser., 392:1 (2012), 012010, 19 pp. | DOI
[21] Pasol, L., Chaoui, M., Yahiaoui, S., and Feuillebois, F., “Analytical Solution for a Spherical Particle near a Wall in Axisymmetrical Polynomial Creeping Flows”, Phys. Fluids, 17:7 (2005), 073602, 13 pp. | DOI | Zbl