Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_3_a0, author = {A. P. Markeev}, title = {On the {Dynamics} of a {Gravitational} {Dipole}}, journal = {Russian journal of nonlinear dynamics}, pages = {247--261}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_3_a0/} }
A. P. Markeev. On the Dynamics of a Gravitational Dipole. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 3, pp. 247-261. http://geodesic.mathdoc.fr/item/ND_2021_17_3_a0/
[1] Beletskii, V. V., Motion of an Artificial Satellite about Its Center of Mass, Israel Program for Scientific Translations, Jerusalem, 1966, x, 261 pp.
[2] Beletskii, V. V., Satellite's Motion about Center of Mass in a Gravitational Field, MGU, Moscow, 1975, 308 pp. (Russian)
[3] Sarychev, V. A., Problems of Orientation of Satellites, Itogi Nauki Tekh. Ser. Issled. Kosmich. Prostr., 11, VINITI, Moscow, 1978, 224 pp. (Russian)
[4] Markeev, A. P., Linear Hamiltonian Systems and Some Problems on Stability of Motion of a Satellite about Its Center of Mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009, 396 pp. (Russian)
[5] Zlatoustov, V. A. and Markeev A. P., “Stability of Planar Oscillations of a Satellite in an Elliptic Orbit”, Celestial Mech., 7:1 (1973), 31–45 | DOI | Zbl
[6] Smirnov, A. S. and Smolnikov, B. A., Spherical Pendulum Mechanics, SPbGPU, St. Petersburg, 2019, 266 pp. (Russian)
[7] Kosmicheskie Issledovaniya, 38:3 (2000), 307–321 (Russian)
[8] Malkin, I. G., Theory of Stability of Motion, Univ. of Michigan, Ann Arbor, Mich., 1958, 456 pp.
[9] Malkin, I. G., Some Problems in the Theory of Nonlinear Oscillations: In 2 Vols., v. 1, United States Atomic Energy Commission, Technical Information Service, Germantown, Md., 1959, 589 pp.
[10] Birkhoff, G. D., Dynamical Systems, AMS Coll. Publ., 9, AMS, Providence, RI, 1966, 305 pp.
[11] Dokl. Akad. Nauk SSSR (N. S.), 98:4 (1954), 527–530 (Russian) | DOI | Zbl
[12] Uspekhi Mat. Nauk, 18:5 (1963), 13–40 (Russian) | DOI | Zbl
[13] Uspekhi Mat. Nauk, 18:6(114) (1963), 91–192 (Russian) | DOI | Zbl
[14] Arnol'd, V. I., Mathematical Methods of Classical Mechanics, Grad. Texts in Math., 60, 2nd ed., Springer, New York, 1997, 529 pp.
[15] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp. | DOI | Zbl
[16] Moser, J. K., Lectures on Hamiltonian Systems, Mem. Amer. Math. Soc., 81, AMS, Providence, R.I., 1968, 60 pp.
[17] Moser, J., “New Aspects in the Theory of Stability of Hamiltonian Systems”, Comm. Pure Appl. Math., 11:1 (1958), 81–114 | DOI | Zbl
[18] Moser, J., “Stabilitätsverhalten Kanonischer Differentialgleichungssysteme”, Nach. Akad. Wiss. Göttingen, Math. Phys. Kl. II, 1955:6 (1955), 87–120 | Zbl
[19] Glimm, J., “Formal Stability of Hamiltonian Systems”, Comm. Pure Appl. Math., 17,:4 (1964), 509–526 | DOI | Zbl
[20] Funkts. Anal. Prilozh., 5:4 (1971), 82–83 (Russian) | DOI
[21] Uspekhi Mat. Nauk, 32:6(198) (1977), 5–66, 287 (Russian) | DOI | Zbl | Zbl
[22] Giacaglia, G. E. O., Perturbation Methods in Non-Linear Systems, Appl. Math. Sci., 8, Springer, New York, 1972, viii+369 pp. | DOI | Zbl