Incorporation of Fluid Compressibility
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 2, pp. 195-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with assessing the correctness of applying various mathematical models for the calculation of the hydroshock phenomena in technical devices for modes close to critical parameters of the fluid. We study the applicability limits of the equation of state for an incompressible fluid (the assumption of constancy of the medium density) to the simulation of processes of the safety valve operation for high values of pressures in the valve. We present a scheme for adapting the numerical method of S. K. Godunov for calculation of flows of incompressible fluids. A generalization of the method for the Mie – Grüneisen equation of state is made using an algorithm of local approximation. A detailed validation and verification of the developed numerical method is provided, and relevant schemes and algorithms are given. Modeling of the hydroshock phenomenon under the valve actuation within the incompressible fluid model is carried out by the openFoam software. The comparison of the results for the weakly compressible and incompressible fluid models allows an estimation of the applicability ranges for the proposed schemes and algorithms. It is shown that the problem of the hydroshock phenomenon is correctly solved using the model of an incompressible fluid for the modes characterized by pressure ratios of no more than 1000 at the boundary of media discontinuity. For all pressure ratios exceeding 1000, it is necessary to apply the proposed weakly compressible fluid approach along with the Mie – Grüneisen equation of state.
Keywords: hydraulic device, mathematical model, numerical simulation, water, weakly compressible fluid approach
Mots-clés : Godunov’s method, Mie – Grüneisen equation of state, incompressible fluid.
@article{ND_2021_17_2_a4,
     author = {T. Raeder and V. A. Tenenev and A. A. Chernova},
     title = {Incorporation of {Fluid} {Compressibility}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {195--209},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_2_a4/}
}
TY  - JOUR
AU  - T. Raeder
AU  - V. A. Tenenev
AU  - A. A. Chernova
TI  - Incorporation of Fluid Compressibility
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 195
EP  - 209
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_2_a4/
LA  - en
ID  - ND_2021_17_2_a4
ER  - 
%0 Journal Article
%A T. Raeder
%A V. A. Tenenev
%A A. A. Chernova
%T Incorporation of Fluid Compressibility
%J Russian journal of nonlinear dynamics
%D 2021
%P 195-209
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_2_a4/
%G en
%F ND_2021_17_2_a4
T. Raeder; V. A. Tenenev; A. A. Chernova. Incorporation of Fluid Compressibility. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 2, pp. 195-209. http://geodesic.mathdoc.fr/item/ND_2021_17_2_a4/

[1] Song, X., Cui, L., Cao, M., Cao, W., Park, Y., and Dempster, W. M., “A CFD Analysis of the Dynamics of a Direct-Operated Safety Relief Valve Mounted on a Pressure Vessel”, Energy Convers. Manag., 81 (2014), 407–419 | DOI

[2] Raeder, T., Tenenev, V. A., and Chernova, A. A., “Numerical Simulation of Unstable Operating Modes of a Safety Valve”, Vestn. Tomsk. Univ. Mat. Mekh., 2020, no. 68, 141–157 (Russian) | MR

[3] Ismagilova, D. F., Ismagilova, R. F., and Tselischev, V. A., “Mathematical Modeling of Water Hammer Protection System”, Vestn. UGATU, 18:4(65) (2014), 72–78 (Russian)

[4] Jin, Zh., Wei, L., Chen, L. L., Qian, J. Y., and Zhang, M., “Numerical Simulation and Structure Improvement of Double Throttling in a High Parameter Pressure Reducing Valve”, J. Zhejiang Univ. Sci. A, 14:2 (2013), 137–146 | DOI

[5] Quartapelle, L., Castelletti, L., Guardone, A., and Quaranta, G., “Solution of the Riemann Problem of Classical Gasdynamics”, J. Comput. Phys., 190:1 (2003), 118–140 | DOI | MR | Zbl

[6] Colella, P. and Glaz, H. M., “Efficient Solution Algorithms for the Riemann Problem for Real Gases”, J. Comput. Phys., 59:2 (1985), 264–289 | DOI | MR | Zbl

[7] Kopyshev, V. P., Medvedev, A. B., and Khrustalev, V. V., “Equation of State of Explosion Products on the Basis of a Modified van der Waals Model”, Combust. Explos. Shock Waves, 42:1 (2006), 76–87 | DOI

[8] Trzciński, W. A., Szymańczyk, L., and Kramarczyk, B., “Determination of the Equation of State for the Detonation Products of Emulsion Explosives”, Cent. Eur. J. Energ. Mater., 16(1) (2019), 49–64 | DOI

[9] Miller, G. H. and Puckett, E. G., “A High-Order Godunov Method for Multiple Condensed Phases”, J. Comput. Phys., 128:1 (1996), 134–164 | DOI | Zbl

[10] Godunov, S. K., “A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics”, Mat. Sb. (N. S.), 47(89):3 (1959), 271–306 (Russian) | MR | Zbl

[11] Zh. Vychisl. Mat. Mat. Fiz., 48:6 (2008), 1102–1110 (Russian) | DOI | MR | Zbl

[12] Bell, I. H., Wronski, J., Quoilin, S., and Lemort, V., “Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp”, Ind. Eng. Chem. Res., 53:6 (2014), 2498–2508 | DOI

[13] Toro, E. F., Castro, C. E., and Lee, B. J., “A Novel Numerical Flux for the 3D Euler Equations with General Equation of State”, J. Comput. Phys., 303 (2015), 80–94 | DOI | MR | Zbl

[14] Numerical Solution of Multidimensional Problems of Gas Dynamics, ed. S. K. Godunov, Nauka, Moscow, 1976, 400 pp. (Russian) | MR

[15] Prokopov, G. P. and Severin, A. V., Rational Realization of Godunov's Method, Preprint No. 29, KIAM, Moscow, 2009, 24 pp. (Russian)

[16] Kulikovskii, A. G., Pogorelov, N. V., and Semenov, A. Yu., Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Monogr. Surv. Pure Appl. Math., 118, Chapman Hall/CRC, Boca Raton, Fla., 2001, xiv+540 pp. | MR | Zbl

[17] Likhachev, E. R., “Equation of State of Liquid Mercury”, Vestn. VGU. Ser. Fiz. Matem., 2014, no. 3, 41–48 (Russian)

[18] Rivkin, S. L. and Alexandrov, A. A., The Thermophysical Properties of Water and Steam, Energoatomizdat, Moscow, 1984, 80 pp. (Russian) | MR

[19] Teplofiz. Vys. Temp., 46:3 (2008), 362–373 (Russian) | DOI

[20] Raeder, T., Tenenev, V. A., Koroleva, M. R., and Mishchenkova, O. V., “Nonlinear Processes in Safety Systems for Substances with Parameters Close to a Critical State”, Russian J. Nonlinear Dyn., 17:1 (2021), 119–138 | MR | Zbl

[21] Colonna, P. and Guardone, A., “Molecular Interpretation of Nonclassical Gasdynamics of Dense Vapors under the van der Waals Model”, Phys. Fluids, 18:5 (2006), 056101, 14 pp. | DOI

[22] Raeder, T., Tenenev, V., and Koroleva, M., “Numerical Simulation of the Working Process in a Safety Valve with Additional Gas-Dynamic Coupling”, Intellekt. Sist. Proizv., 18:3 (2020), 118–126 (Russian) | DOI

[23] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “The Dynamics of Vortex Rings: Leapfrogging, Choreographies and the Stability Problem”, Regul. Chaotic Dyn., 18:1–2 (2013), 33–62 | DOI | MR | Zbl

[24] Kuzenov, V. V. and Ryzhkov, S. V., “Mathematical Modeling of Plasma Dynamics for Processes in Capillary Discharges”, Russian J. Nonlinear Dyn., 15:4 (2019), 543–550 | MR | Zbl

[25] Mamaev, I. S., Tenenev, V. A., and Vetchanin, E. V., “Dynamics of a Body with a Sharp Edge in a Viscous Fluid”, Rus. J. Nonlin. Dyn., 14:4 (2018), 473–494 | MR | Zbl