Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_2_a2, author = {E. Kuryzhov and E. Karatetskaia and D. Mints}, title = {Lorenz- and {Shilnikov-Shape} {Attractors}}, journal = {Russian journal of nonlinear dynamics}, pages = {165--174}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_2_a2/} }
E. Kuryzhov; E. Karatetskaia; D. Mints. Lorenz- and Shilnikov-Shape Attractors. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 2, pp. 165-174. http://geodesic.mathdoc.fr/item/ND_2021_17_2_a2/
[1] Biragov, V. S., Ovsyannikov, I. M., and Turaev, D. V., “A Study of One Endomorphism of a Plane”, Methods of Qualitative Theory and Theory of Bifurcations, ed. E. A. Leontovich-Andronova, Gorky Gos. Univ., Gorky, 1988, 72–86 (Russian) | MR
[2] Gonchenko, S. V., Ovsyannikov, I. I., Simó, C., and Turaev, D., “Three-Dimensional Hénon-Like Maps and Wild Lorenz-Like Attractors”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15:11 (2005), 3493–3508 | DOI | MR | Zbl
[3] Gonchenko, A. S., Gonchenko, S. V., and Shilnikov, L. P., “Towards Scenarios of Chaos Appearance in Three-Dimensional Maps”, Nelin. Dinam., 8:1 (2012), 3–28 (Russian) | DOI
[4] Gonchenko, A. S., Gonchenko, S. V., Kazakov, A. O., and Turaev, D. V., “Simple Scenarios of Onset of Chaos in Three-Dimensional Maps”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24:8 (2014), 1440005, 25 pp. | DOI | MR | Zbl
[5] Gonchenko, A. S. and Gonchenko, S. V., “Variety of Strange Pseudohyperbolic Attractors in Three-Dimensional Generalized Hénon Maps”, Phys. D, 337 (2016), 43–57 | DOI | MR | Zbl
[6] Gonchenko, A. S., Gonchenko, S. V., and Kazakov, A. O., “Richness of Chaotic Dynamics in the Nonholonomic Model of Celtic Stone”, Regul. Chaotic Dyn., 18:5 (2013), 521–538 | DOI | MR | Zbl
[7] Izv. Vyssh. Uchebn. Zaved. Radiofizika, 62:5 (2019), 412–428 (Russian) | DOI
[8] Eilertsen, J. S. and Magnan, J. F., “On the Chaotic Dynamics Associated with the Center Manifold Equations of Double-Diffusive Convection near a Codimension-Four Bifurcation Point at Moderate Thermal Rayleigh Number”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28:8 (2018), 1850094, 24 pp. | DOI | MR | Zbl
[9] Eilertsen, J. S. and Magnan, J. F., “Asymptotically Exact Codimension-Four Dynamics and Bifurcations in Two-Dimensional Thermosolutal Convection at High Thermal Rayleigh Number: Chaos from a Quasi-Periodic Homoclinic Explosion and Quasi-Periodic Intermittency”, Phys. D, 382/383 (2018), 1–21 | DOI | MR | Zbl
[10] Kuznetsov, Yu. A., Meijer, H. G. E., and van Veen, L., “The Fold-Flip Bifurcation”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:7 (2004), 2253–2282 | DOI | MR | Zbl
[11] Ovsyannikov, I., Global and Local Bifurcations, Three-Dimensional Hénon Maps and Discrete Lorenz Attractors, 2021, arXiv: 2104.01262 [math.DS] | Zbl
[12] Selecta Math. Soviet., 10:1 (1991), 43–53 | MR | MR | Zbl
[13] Garashchuk, I. R., Sinelshchikov, D. I., Kazakov, A. O., and Kudryashov, N. A., “Hyperchaos and Multistability in the Model of Two Interacting Microbubble Contrast Agents”, Chaos, 29:6 (2019), 063131, 16 pp. | DOI | Zbl
[14] Rössler, O. E., “An Equation for Hyperchaos”, Phys. Lett. A, 71:2–3 (1979), 155–157 | DOI | MR
[15] Harrison, M. A. and Lai, Y.-Ch., “Route to High-Dimensional Chaos”, Phys. Rev. E, 59:4 (1999), R3799–R3802 | DOI | MR
[16] Shykhmamedov, A., Karatetskaia, E., Kazakov, A., and Stankevich, N., Hyperchaotic Attractors of Three-Dimensional Maps and Scenarios of Their Appearance, 2020, arXiv: 2012.05099 [math.DS]
[17] Stankevich, N., Kazakov, A., and Gonchenko, S., “Scenarios of Hyperchaos Occurrence in 4D Rössler System”, Chaos, 30:12 (2020), 123129, 16 pp. | DOI | MR | Zbl
[18] Karatetskaia, E., Shykhmamedov, A., and Kazakov, A., “Shilnikov Attractors in Three-Dimensional Orientation-Reversing Maps”, Chaos, 31:1 (2021), 011102, 11 pp. | DOI | MR | Zbl
[19] Gonchenko, S., Gonchenko, A., Kazakov, A., and Samylina, E., “On Discrete Lorenz-Like Attractors”, Chaos, 31:2 (2021), 023117, 20 pp. | DOI | MR | Zbl
[20] Stankevich, N., Kuznetsov, A., Popova, E., and Seleznev, E., “Chaos and Hyperchaos via Secondary Neimark – Sacker Bifurcation in a Model of Radiophysical Generator”, Nonlinear Dynam., 97:4 (2019), 2355–2370 | DOI | Zbl