On the Organization of Homoclinic Bifurcation Curves in Systems with Shilnikov Spiral Attractors
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 2, pp. 157-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study spiral chaos in the classical Rцssler and Arneodo –Coullet –Tresser systems. Special attention is paid to the analysis of bifurcation curves that correspond to the appearance of Shilnikov homoclinic loop of saddle-focus equilibrium states and, as a result, spiral chaos. To visualize the results, we use numerical methods for constructing charts of the maximal Lyapunov exponent and bifurcation diagrams obtained using the MatCont package.
Keywords: Lyapunov analysis.
Mots-clés : Shilnikov bifurcation, spiral chaos
@article{ND_2021_17_2_a1,
     author = {Y. V. Bakhanova and A. A. Bobrovsky and T. K. Burdygina and S. M. Malykh},
     title = {On the {Organization} of {Homoclinic} {Bifurcation} {Curves} in {Systems} with {Shilnikov} {Spiral} {Attractors}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {157--164},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_2_a1/}
}
TY  - JOUR
AU  - Y. V. Bakhanova
AU  - A. A. Bobrovsky
AU  - T. K. Burdygina
AU  - S. M. Malykh
TI  - On the Organization of Homoclinic Bifurcation Curves in Systems with Shilnikov Spiral Attractors
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 157
EP  - 164
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_2_a1/
LA  - en
ID  - ND_2021_17_2_a1
ER  - 
%0 Journal Article
%A Y. V. Bakhanova
%A A. A. Bobrovsky
%A T. K. Burdygina
%A S. M. Malykh
%T On the Organization of Homoclinic Bifurcation Curves in Systems with Shilnikov Spiral Attractors
%J Russian journal of nonlinear dynamics
%D 2021
%P 157-164
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_2_a1/
%G en
%F ND_2021_17_2_a1
Y. V. Bakhanova; A. A. Bobrovsky; T. K. Burdygina; S. M. Malykh. On the Organization of Homoclinic Bifurcation Curves in Systems with Shilnikov Spiral Attractors. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 2, pp. 157-164. http://geodesic.mathdoc.fr/item/ND_2021_17_2_a1/

[1] Rössler, O. E., “An Equation for Continuous Chaos”, Phys. Lett. A, 57:5 (1976), 397–398 | DOI | MR | Zbl

[2] Arnéodo, A., Coullet, P., and Tresser, C., “Oscillators with Chaotic Behavior: An Illustration of a Theorem by Shil'nikov”, J. Statist. Phys., 27:1 (1982), 171–182 | DOI | MR | Zbl

[3] Dokl. Akad. Nauk SSSR, 160 (1965), 558–561 (Russian) | MR | Zbl

[4] Rössler, O. E., “Continuous Chaos: Four Prototype Equations”, Ann. New York Acad. Sci., 316:1 (1979), 376–392 | DOI | MR | Zbl

[5] Gaspard, P., Kapral, R., and Nicolis, G., “Bifurcation Phenomena Near Homoclinic Systems: A Two-Parameter Analysis”, J. Statist. Phys., 35:5–6 (1984), 697–727 | DOI | MR

[6] Afraimovich, V. S. and Shil'nikov, L. P., “Strange Attractors and Quasiattractors”, Nonlinear Dynamics and Turbulence, Interaction Mech. Math. Ser., eds. G. I. Barenblatt, G. Iooss, D. D. Joseph, Pitman, Boston, Mass., 1983, 1–34 | MR

[7] Barrio, R., Blesa, F., Serrano, S., and Shilnikov, A., “Global Organization of Spiral Structures in Biparameter Space of Dissipative Systems with Shilnikov Saddle-Foci”, Phys. Rev. E, 84:3 (2011), 035201, 5 pp. | DOI

[8] Vitolo, R., Glendinning, P., and Gallas, J. A., “Global Structure of Periodicity Hubs in Lyapunov Phase Diagrams of Dissipative Flows”, Phys. Rev. E, 84:1 (2011), 016216, 7 pp. | DOI

[9] Gonchenko, S. V., Turaev, D. V., Gaspard, P., and Nicolis, G., “Complexity in the Bifurcation Structure of Homoclinic Loops to a Saddle-Focus”, Nonlinearity, 10:2 (1997), 409–423 | DOI | MR | Zbl

[10] Malykh, S., Bakhanova, Yu., Kazakov, A., Pusuluri, K., and Shilnikov, A., “Homoclinic Chaos in the Rössler Model”, Chaos, 30:11 (2020), 113126, 18 pp. | DOI | MR | Zbl

[11] Gonchenko, A. S., Gonchenko, S. V., Kazakov, A. O., Kozlov, A. D., and Bakhanova, Yu. V., “Mathematical Theory of Dynamical Chaos and Its Applications: Review. Part 2. Spiral Chaos of Three-Dimensional Flows”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 27:5 (2019), 7–52 (Russian) | MR

[12] Shilnikov, L. P., “Bifurcation Theory and Turbulence”, Methods of the Qualitative Theory of Differential Equations, ed. E. A. Leontovich, GGU, Gorky, 1986, 150–163 (Russian) | MR

[13] Gaspard, P., “Generation of a Countable Set of Homoclinic Flows through Bifurcation”, Phys. Lett. A, 97:1–2 (1983), 1–4 | DOI | MR

[14] Bakhanova, Yu. V., Kazakov, A. O., Korotkov, A. G., Levanova, T. A., and Osipov, G. V., “Spiral Attractors As the Root of a New Type of “Bursting Activity” in the Rosenzweig – MacArthur Model”, Eur. Phys. J. Spec. Top, 227:7–9 (2018), 959–970 | DOI

[15] Bykov, V. V., “Orbit Structure in a Neighborhood of a Separatrix Cycle Containing Two Saddle-Foci”, Methods of Qualitative Theory of Differential Equations and Related Topics, Amer. Math. Soc. Transl. Ser. 2, 200, AMS, Providence, R.I., 2000, 87–97 | MR | Zbl