Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_2_a1, author = {Y. V. Bakhanova and A. A. Bobrovsky and T. K. Burdygina and S. M. Malykh}, title = {On the {Organization} of {Homoclinic} {Bifurcation} {Curves} in {Systems} with {Shilnikov} {Spiral} {Attractors}}, journal = {Russian journal of nonlinear dynamics}, pages = {157--164}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_2_a1/} }
TY - JOUR AU - Y. V. Bakhanova AU - A. A. Bobrovsky AU - T. K. Burdygina AU - S. M. Malykh TI - On the Organization of Homoclinic Bifurcation Curves in Systems with Shilnikov Spiral Attractors JO - Russian journal of nonlinear dynamics PY - 2021 SP - 157 EP - 164 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2021_17_2_a1/ LA - en ID - ND_2021_17_2_a1 ER -
%0 Journal Article %A Y. V. Bakhanova %A A. A. Bobrovsky %A T. K. Burdygina %A S. M. Malykh %T On the Organization of Homoclinic Bifurcation Curves in Systems with Shilnikov Spiral Attractors %J Russian journal of nonlinear dynamics %D 2021 %P 157-164 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2021_17_2_a1/ %G en %F ND_2021_17_2_a1
Y. V. Bakhanova; A. A. Bobrovsky; T. K. Burdygina; S. M. Malykh. On the Organization of Homoclinic Bifurcation Curves in Systems with Shilnikov Spiral Attractors. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 2, pp. 157-164. http://geodesic.mathdoc.fr/item/ND_2021_17_2_a1/
[1] Rössler, O. E., “An Equation for Continuous Chaos”, Phys. Lett. A, 57:5 (1976), 397–398 | DOI | MR | Zbl
[2] Arnéodo, A., Coullet, P., and Tresser, C., “Oscillators with Chaotic Behavior: An Illustration of a Theorem by Shil'nikov”, J. Statist. Phys., 27:1 (1982), 171–182 | DOI | MR | Zbl
[3] Dokl. Akad. Nauk SSSR, 160 (1965), 558–561 (Russian) | MR | Zbl
[4] Rössler, O. E., “Continuous Chaos: Four Prototype Equations”, Ann. New York Acad. Sci., 316:1 (1979), 376–392 | DOI | MR | Zbl
[5] Gaspard, P., Kapral, R., and Nicolis, G., “Bifurcation Phenomena Near Homoclinic Systems: A Two-Parameter Analysis”, J. Statist. Phys., 35:5–6 (1984), 697–727 | DOI | MR
[6] Afraimovich, V. S. and Shil'nikov, L. P., “Strange Attractors and Quasiattractors”, Nonlinear Dynamics and Turbulence, Interaction Mech. Math. Ser., eds. G. I. Barenblatt, G. Iooss, D. D. Joseph, Pitman, Boston, Mass., 1983, 1–34 | MR
[7] Barrio, R., Blesa, F., Serrano, S., and Shilnikov, A., “Global Organization of Spiral Structures in Biparameter Space of Dissipative Systems with Shilnikov Saddle-Foci”, Phys. Rev. E, 84:3 (2011), 035201, 5 pp. | DOI
[8] Vitolo, R., Glendinning, P., and Gallas, J. A., “Global Structure of Periodicity Hubs in Lyapunov Phase Diagrams of Dissipative Flows”, Phys. Rev. E, 84:1 (2011), 016216, 7 pp. | DOI
[9] Gonchenko, S. V., Turaev, D. V., Gaspard, P., and Nicolis, G., “Complexity in the Bifurcation Structure of Homoclinic Loops to a Saddle-Focus”, Nonlinearity, 10:2 (1997), 409–423 | DOI | MR | Zbl
[10] Malykh, S., Bakhanova, Yu., Kazakov, A., Pusuluri, K., and Shilnikov, A., “Homoclinic Chaos in the Rössler Model”, Chaos, 30:11 (2020), 113126, 18 pp. | DOI | MR | Zbl
[11] Gonchenko, A. S., Gonchenko, S. V., Kazakov, A. O., Kozlov, A. D., and Bakhanova, Yu. V., “Mathematical Theory of Dynamical Chaos and Its Applications: Review. Part 2. Spiral Chaos of Three-Dimensional Flows”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 27:5 (2019), 7–52 (Russian) | MR
[12] Shilnikov, L. P., “Bifurcation Theory and Turbulence”, Methods of the Qualitative Theory of Differential Equations, ed. E. A. Leontovich, GGU, Gorky, 1986, 150–163 (Russian) | MR
[13] Gaspard, P., “Generation of a Countable Set of Homoclinic Flows through Bifurcation”, Phys. Lett. A, 97:1–2 (1983), 1–4 | DOI | MR
[14] Bakhanova, Yu. V., Kazakov, A. O., Korotkov, A. G., Levanova, T. A., and Osipov, G. V., “Spiral Attractors As the Root of a New Type of “Bursting Activity” in the Rosenzweig – MacArthur Model”, Eur. Phys. J. Spec. Top, 227:7–9 (2018), 959–970 | DOI
[15] Bykov, V. V., “Orbit Structure in a Neighborhood of a Separatrix Cycle Containing Two Saddle-Foci”, Methods of Qualitative Theory of Differential Equations and Related Topics, Amer. Math. Soc. Transl. Ser. 2, 200, AMS, Providence, R.I., 2000, 87–97 | MR | Zbl