Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_2_a0, author = {I. I. Maglevanny and V. A. Smolar and T. I. Karyakina}, title = {Effects of a {Perpendicularly} {Applied} {Magnetic} {Field} on {Harmonically} {Driven} {Quasi-two-dimensional} {Electron} {Gas:} the {Static} {Macrostates} {Symmetry} {Breaking} and {Generation} of {Even} {Harmonics} in {System} {Output}}, journal = {Russian journal of nonlinear dynamics}, pages = {141--156}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_2_a0/} }
TY - JOUR AU - I. I. Maglevanny AU - V. A. Smolar AU - T. I. Karyakina TI - Effects of a Perpendicularly Applied Magnetic Field on Harmonically Driven Quasi-two-dimensional Electron Gas: the Static Macrostates Symmetry Breaking and Generation of Even Harmonics in System Output JO - Russian journal of nonlinear dynamics PY - 2021 SP - 141 EP - 156 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2021_17_2_a0/ LA - en ID - ND_2021_17_2_a0 ER -
%0 Journal Article %A I. I. Maglevanny %A V. A. Smolar %A T. I. Karyakina %T Effects of a Perpendicularly Applied Magnetic Field on Harmonically Driven Quasi-two-dimensional Electron Gas: the Static Macrostates Symmetry Breaking and Generation of Even Harmonics in System Output %J Russian journal of nonlinear dynamics %D 2021 %P 141-156 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2021_17_2_a0/ %G en %F ND_2021_17_2_a0
I. I. Maglevanny; V. A. Smolar; T. I. Karyakina. Effects of a Perpendicularly Applied Magnetic Field on Harmonically Driven Quasi-two-dimensional Electron Gas: the Static Macrostates Symmetry Breaking and Generation of Even Harmonics in System Output. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 2, pp. 141-156. http://geodesic.mathdoc.fr/item/ND_2021_17_2_a0/
[1] Guckenheimer, J. and Holmes, Ph., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., 42, 5th ed, Springer, New York, 1997, 459 pp. | MR
[2] Arnold, V. I., Afrajmovich, V. S., Il'yashenko, Yu. S., and Shil'nikov, L. P., Bifurcation Theory and Catastrophe Theory, Encyclopaedia Math. Sci., 5, Springer, Berlin, 1999, viii+271 pp. | MR
[3] Morozov, A. Yu. and Reviznikov, D. L., “Modeling of Dynamic Systems with Interval Parameters in the Presence of Singularities”, Russian J. Nonlinear Dyn., 16:3 (2020), 479–490 | MR | Zbl
[4] Jafrate, G. J., Ferry, D., and Reich, R., “Lateral (Two-Dimensional) Superlattices: Quantum-Well Confinement and Charge Instabilities”, Surf. Sci., 113:1–3 (1982), 485–488 | DOI
[5] Reich, R. K., Crondin, R. O., and Ferry, D. K., “Transport in Lateral Surface Superlattices”, Phys. Rev. B, 27:6 (1983), 3483–3493 | DOI
[6] Shmelev, G. M. and Maglevanny, I. I., “Transverse EMF in Lateral Superlattices”, Physics of Low-Dimensional Structures, 9–10 (1996), 81–88
[7] Epshtein, E. M., Shmelev, G. M., and Maglevanny, I. I., “Ferromagnetic and Ferroelectric Properties of Nonequilibrium Electron Gas”, Phys. Lett. A, 254:1–2 (1999), 107–111 | DOI
[8] Maglevanny, I. I., “Highly Nonlinear Phenomena of Self-Organization of Quasi-Two-Dimensional Electron Gas in High Magnetic and Electric Fields”, Phys. Status Solidi B, 246:6 (2009), 1297–1305 | DOI
[9] Maglevanny, I. I., Smolar, V. A., and Karyakina, T. I., “Thermally and Electrically Controllable Multiple High Harmonics Generation by Harmonically Driven Quasi-Two-Dimensional Electron Gas”, Superlattices Microstruct., 118 (2018), 29–44 | DOI | MR
[10] Maglevanny, I. I., Smolar, V. A., and Karyakina, T. I., “Weak Signals Amplification through Controlled Bifurcations in Quasi-Two-Dimensional Electron Gas”, Russian J. Nonlinear Dyn., 14:4 (2018), 453–472 | MR | Zbl
[11] Grahn, H. T., von Klitzing, K., Ploog, K., and Döhler, G. H., “Electrical Transport in Narrow-Miniband Semiconductor Superlattices”, Phys. Rev. B, 43:14 (1991), 12094–12097 | DOI
[12] Bass, F. G. and Tetervov, A. P., “High-Frequency Phenomena in Semiconductor Superlattices”, Phys. Rep., 140:5 (1986), 237–322 | DOI
[13] Shmelev, G. M., Epshtein, E. M., Maglevanny, I. I., and Yudina, A. V., “Anomalous Hall Effect in Quasi-Two-Dimensional Superlattices in High Electric Field”, Physics of Low-Dimensional Structures, 4–5 (1996), 47–55
[14] Epshtein, E. M., Maglevanny, I. I., and Shmelev, G. M., “Electric-Field-Induced Magnetoresistance of Lateral Superlattices”, J. Phys. Condens. Matter, 8:25 (1996), 4509–4514 | DOI
[15] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge Univ. Press, Cambridge, 2007, 1256 pp. | MR | Zbl
[16] Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations, v. 1, Springer Ser. Comput. Math., 8, Nonstiff Problems, 2nd ed., Springer, New York, 1993, xvi+528 pp. | MR | Zbl
[17] Gilmore, R., Catastrophe Theory for Scientists and Engineers, Dover, New York, 1993, 666 pp. | MR
[18] Poston, T. and Stewart, I., Catastrophe Theory and Its Application, Pitman, London, 1978, xviii+491 pp. | MR
[19] Maglevanny, I. I., Meletlidou, E., and Stagika, G., “Numerical Investigation of Bifurcations of Equilibria and Hopf Bifurcations in Disease Transmission Models”, Commun. Nonlinear Sci. Numer. Simul., 16:1 (2011), 284–295 | DOI | MR | Zbl
[20] Aoki, K., Nonlinear Dynamics and Chaos in Semiconductors, CRC, Boca Raton, Fla., 2000, 580 pp.
[21] Landa, P. S. and McClintock, P. V. E., “Vibrational Resonance”, J. Phys. A, 33:45 (2000), L433–L438 | DOI | MR | Zbl