Effects of a Perpendicularly Applied Magnetic Field on Harmonically Driven Quasi-two-dimensional Electron Gas: the Static Macrostates Symmetry Breaking and Generation of Even Harmonics in System Output
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 2, pp. 141-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider activation processes in a nonlinear metastable system based on a quasi-two-dimensional superlattice and study the dynamics of such a system, which is externally driven by a harmonic force in regimes of controlled instabilities. The spontaneous transverse electric field is considered as an order parameter and the forced violations of the order parameter are considered as a response of a system to periodic driving. The internal control parameters are the longitudinal applied electric field, the sample temperature and the magnetic field which is orthogonal to the superlattice plane. We investigate the cooperative effects of self-organization and high harmonic forcing in such a system from the viewpoint of catastrophe theory It is shown through numerical simulations that the additional magnetic field breaks the static macrostates symmetry and leads to generation of even harmonics; it also allows the control of the intensity of particular harmonics. The intensity of even harmonics demonstrates resonanttype nonmonotonic dependence on control parameters with the maxima at points close to critical points of the synergetic potential.
Keywords: lateral superlattices, bifurcation-based device, spontaneous transverse electric field, nonequilibrium phase transitions, symmetry breaking of magnetic-field-induced macrostates, resonant enhancement of even harmonics.
@article{ND_2021_17_2_a0,
     author = {I. I. Maglevanny and V. A. Smolar and T. I. Karyakina},
     title = {Effects of a {Perpendicularly} {Applied} {Magnetic} {Field} on {Harmonically} {Driven} {Quasi-two-dimensional} {Electron} {Gas:} the {Static} {Macrostates} {Symmetry} {Breaking} and {Generation} of {Even} {Harmonics} in {System} {Output}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {141--156},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_2_a0/}
}
TY  - JOUR
AU  - I. I. Maglevanny
AU  - V. A. Smolar
AU  - T. I. Karyakina
TI  - Effects of a Perpendicularly Applied Magnetic Field on Harmonically Driven Quasi-two-dimensional Electron Gas: the Static Macrostates Symmetry Breaking and Generation of Even Harmonics in System Output
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 141
EP  - 156
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_2_a0/
LA  - en
ID  - ND_2021_17_2_a0
ER  - 
%0 Journal Article
%A I. I. Maglevanny
%A V. A. Smolar
%A T. I. Karyakina
%T Effects of a Perpendicularly Applied Magnetic Field on Harmonically Driven Quasi-two-dimensional Electron Gas: the Static Macrostates Symmetry Breaking and Generation of Even Harmonics in System Output
%J Russian journal of nonlinear dynamics
%D 2021
%P 141-156
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_2_a0/
%G en
%F ND_2021_17_2_a0
I. I. Maglevanny; V. A. Smolar; T. I. Karyakina. Effects of a Perpendicularly Applied Magnetic Field on Harmonically Driven Quasi-two-dimensional Electron Gas: the Static Macrostates Symmetry Breaking and Generation of Even Harmonics in System Output. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 2, pp. 141-156. http://geodesic.mathdoc.fr/item/ND_2021_17_2_a0/

[1] Guckenheimer, J. and Holmes, Ph., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., 42, 5th ed, Springer, New York, 1997, 459 pp. | MR

[2] Arnold, V. I., Afrajmovich, V. S., Il'yashenko, Yu. S., and Shil'nikov, L. P., Bifurcation Theory and Catastrophe Theory, Encyclopaedia Math. Sci., 5, Springer, Berlin, 1999, viii+271 pp. | MR

[3] Morozov, A. Yu. and Reviznikov, D. L., “Modeling of Dynamic Systems with Interval Parameters in the Presence of Singularities”, Russian J. Nonlinear Dyn., 16:3 (2020), 479–490 | MR | Zbl

[4] Jafrate, G. J., Ferry, D., and Reich, R., “Lateral (Two-Dimensional) Superlattices: Quantum-Well Confinement and Charge Instabilities”, Surf. Sci., 113:1–3 (1982), 485–488 | DOI

[5] Reich, R. K., Crondin, R. O., and Ferry, D. K., “Transport in Lateral Surface Superlattices”, Phys. Rev. B, 27:6 (1983), 3483–3493 | DOI

[6] Shmelev, G. M. and Maglevanny, I. I., “Transverse EMF in Lateral Superlattices”, Physics of Low-Dimensional Structures, 9–10 (1996), 81–88

[7] Epshtein, E. M., Shmelev, G. M., and Maglevanny, I. I., “Ferromagnetic and Ferroelectric Properties of Nonequilibrium Electron Gas”, Phys. Lett. A, 254:1–2 (1999), 107–111 | DOI

[8] Maglevanny, I. I., “Highly Nonlinear Phenomena of Self-Organization of Quasi-Two-Dimensional Electron Gas in High Magnetic and Electric Fields”, Phys. Status Solidi B, 246:6 (2009), 1297–1305 | DOI

[9] Maglevanny, I. I., Smolar, V. A., and Karyakina, T. I., “Thermally and Electrically Controllable Multiple High Harmonics Generation by Harmonically Driven Quasi-Two-Dimensional Electron Gas”, Superlattices Microstruct., 118 (2018), 29–44 | DOI | MR

[10] Maglevanny, I. I., Smolar, V. A., and Karyakina, T. I., “Weak Signals Amplification through Controlled Bifurcations in Quasi-Two-Dimensional Electron Gas”, Russian J. Nonlinear Dyn., 14:4 (2018), 453–472 | MR | Zbl

[11] Grahn, H. T., von Klitzing, K., Ploog, K., and Döhler, G. H., “Electrical Transport in Narrow-Miniband Semiconductor Superlattices”, Phys. Rev. B, 43:14 (1991), 12094–12097 | DOI

[12] Bass, F. G. and Tetervov, A. P., “High-Frequency Phenomena in Semiconductor Superlattices”, Phys. Rep., 140:5 (1986), 237–322 | DOI

[13] Shmelev, G. M., Epshtein, E. M., Maglevanny, I. I., and Yudina, A. V., “Anomalous Hall Effect in Quasi-Two-Dimensional Superlattices in High Electric Field”, Physics of Low-Dimensional Structures, 4–5 (1996), 47–55

[14] Epshtein, E. M., Maglevanny, I. I., and Shmelev, G. M., “Electric-Field-Induced Magnetoresistance of Lateral Superlattices”, J. Phys. Condens. Matter, 8:25 (1996), 4509–4514 | DOI

[15] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge Univ. Press, Cambridge, 2007, 1256 pp. | MR | Zbl

[16] Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations, v. 1, Springer Ser. Comput. Math., 8, Nonstiff Problems, 2nd ed., Springer, New York, 1993, xvi+528 pp. | MR | Zbl

[17] Gilmore, R., Catastrophe Theory for Scientists and Engineers, Dover, New York, 1993, 666 pp. | MR

[18] Poston, T. and Stewart, I., Catastrophe Theory and Its Application, Pitman, London, 1978, xviii+491 pp. | MR

[19] Maglevanny, I. I., Meletlidou, E., and Stagika, G., “Numerical Investigation of Bifurcations of Equilibria and Hopf Bifurcations in Disease Transmission Models”, Commun. Nonlinear Sci. Numer. Simul., 16:1 (2011), 284–295 | DOI | MR | Zbl

[20] Aoki, K., Nonlinear Dynamics and Chaos in Semiconductors, CRC, Boca Raton, Fla., 2000, 580 pp.

[21] Landa, P. S. and McClintock, P. V. E., “Vibrational Resonance”, J. Phys. A, 33:45 (2000), L433–L438 | DOI | MR | Zbl