Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_1_a6, author = {O. V. Kholostova}, title = {On {Nonlinear} {Oscillations} of a {Near-Autonomous}}, journal = {Russian journal of nonlinear dynamics}, pages = {77--102}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_1_a6/} }
O. V. Kholostova. On Nonlinear Oscillations of a Near-Autonomous. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 1, pp. 77-102. http://geodesic.mathdoc.fr/item/ND_2021_17_1_a6/
[1] Dokl. Akad. Nauk, 402:3 (2005), 339–343 (Russian) | DOI | MR | MR
[2] Prikl. Mat. Mekh., 70:2 (2006), 200–220 (Russian) | DOI | MR
[3] Markeev, A. P., Linear Hamiltonian Systems and Some Problems on Stability of Motion of a Satellite about Its Center of Mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009, 396 pp. (Russian) | MR
[4] Kholostova, O. V., “On Periodic Motions of a Nonautonomous Hamiltonian System in One Case of Multiple Parametric Resonance”, Nelin. Dinam., 13:4 (2017), 477–504 (Russian) | DOI | MR | Zbl
[5] Prikl. Mat. Mekh., 83:2 (2019), 175–201 (Russian) | DOI | MR | Zbl
[6] Kholostova, O. V., “On the Motions of One Near-Autonomous Hamiltonian System at a $1:1:1$ Resonance”, Regul. Chaotic Dyn., 24:3 (2019), 235–265 | DOI | MR | Zbl
[7] Kholostova, O. V., “On the Motions of Near-Autonomous Hamiltonian System in the Cases of Two Zero Frequencies”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:4 (2020), 672–695 (Russian) | DOI | MR
[8] Meyer, K. R. and Schmidt, D. S., “Periodic Orbits near ${\cal L}\sb{4}$ for Mass Ratios near the Critical Mass Ratio of Routh”, Celestial Mech., 4:1 (1971), 99–109 | DOI | MR | Zbl
[9] Schmidt, D. and Sweet, D., “A Unifying Theory in Determining Periodic Families for Hamiltonian Systems at Resonance”, J. Differential Equations, 14:3 (1973), 597–609 | DOI | MR | Zbl
[10] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)
[11] Sokolsky, A. G., “To the Problem on Stability of Regular Precessions of a Symmetrical Satellite”, Kosmicheskie Issledovaniya, 18:5 (1980), 698–706 (Russian)
[12] van der Meer, J.-C., “Nonsemisimple $1:1$ Resonance at an Equilibrium”, Celestial Mech., 27:2 (1982), 131–149 | DOI | MR | Zbl
[13] Prikl. Mat. Mekh., 56:4 (1992), 587–596 (Russian) | DOI | MR | Zbl
[14] Schmidt, D. S., “Versal Normal Form of the Hamiltonian Function of the Restricted Problem of Three Bodies near $\mathcal{L}_4$”, J. Comput. Appl. Math., 52:1–3 (1994), 155–176 | DOI | MR | Zbl
[15] Bardin, B. S., “On Motions near the Lagrange Equilibrium Point $\mathcal{L}_4$ in the Case of Routh's Critical Mass Ratio”, Celestial Mech. Dynam. Astronom., 82:2 (2002), 163–177 | DOI | MR | Zbl
[16] Lerman, L. M., and Markova, A. P., “On Stability at the Hamiltonian Hopf Bifurcation”, Regul. Chaotic Dyn., 14:1 (2009), 148–162 | DOI | MR | Zbl
[17] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl
[18] Malkin, I. G., Some Problems in the Theory of Nonlinear Oscillations: In 2 Vols.: Vol. 1, United States Atomic Energy Commission, Technical Information Service, Germantown, Md., 1959, 589 pp.
[19] Glimm, J., “Formal Stability of Hamiltonian Systems”, Comm. Pure Appl. Math., 17:4 (1964), 509–526 | DOI | MR | Zbl
[20] Markeev, A. P., “On Rotational Motion of a Dynamically Symmetrical Satellite in an Elliptic Orbit”, Kosmicheskie Issledovaniya, 5:4 (1967), 530–539 (Russian)
[21] Beletskii, V. V., Satellite's Motion about Center of Mass in a Gravitational Field, MGU, Moscow, 1975, 308 pp. (Russian)
[22] Moser, J., “Convergent Series Expansions for Quasi-Periodic Motions”, Math. Ann., 169:1 (1976), 136–176 | DOI | MR
[23] Mel'nikov, V. K., “On Certain Cases of Conservation of Almost Periodic Motions with a Small Change of the Hamiltonian Function”, Dokl. Akad. Nauk SSSR, 165:6 (1965), 1245–1248 (Russian) | MR | Zbl