Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_1_a5, author = {M. Alvarez-Ram{\'\i}rez and A. Garc{\'\i}a and J. Vidarte}, title = {Armbruster {\textendash} {Guckenheimer} {\textendash} {Kim} {Hamiltonian} {System}}, journal = {Russian journal of nonlinear dynamics}, pages = {59--76}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_1_a5/} }
TY - JOUR AU - M. Alvarez-Ramírez AU - A. García AU - J. Vidarte TI - Armbruster – Guckenheimer – Kim Hamiltonian System JO - Russian journal of nonlinear dynamics PY - 2021 SP - 59 EP - 76 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2021_17_1_a5/ LA - en ID - ND_2021_17_1_a5 ER -
M. Alvarez-Ramírez; A. García; J. Vidarte. Armbruster – Guckenheimer – Kim Hamiltonian System. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 1, pp. 59-76. http://geodesic.mathdoc.fr/item/ND_2021_17_1_a5/
[1] Acosta-Humánez, P., Alvarez-Ramírez, M., and Stuchi, T. J., “Nonintegrability of the Armbruster – Guckenheimer – Kim Quartic Hamiltonian through Morales – Ramis Theory”, SIAM J. Appl. Dyn. Syst., 17:1 (2018), 78–96 | DOI | MR | Zbl
[2] Andrle, P., “A Third Integral of Motion in a System with a Potential of the Fourth Degree”, Phys. Lett. A, 17:4 (1966), 169–175 | DOI | Zbl
[3] Armbruster, D., Guckenheimer, J., and Kim, S.-H., “Chaotic Dynamics in Systems with Square Symmetry”, Phys. Lett. A, 140:7–8 (1989), 416–420 | DOI | MR
[4] Blesa, F., Piasecki, S., Dena, A., and Barrio, R., “Connecting Symmetric and Asymmetric Families of Periodic Orbits in Squared Symmetric Hamiltonians”, Int. J. Mod. Phys. C, 23:2 (2012), 1250014, 22 pp. | DOI | MR | Zbl
[5] Deprit, A., “The Lissajous Transformation: 1. Basics”, Celest. Mech. Dyn. Astron., 51:3 (1991), 201–225 | DOI | MR | Zbl
[6] Deprit, A. and Elipe, A., “The Lissajous Transformation: 2. Normalization”, Celest. Mech. Dyn. Astron., 51:3 (1991), 227–250 | DOI | MR | Zbl
[7] Elmandouh, A. A., “On the Dynamics of Armbruster Guckenheimer Kim Galactic Potential in a Rotating Reference Frame”, Astrophys. Space Sci., 361:6 (2016), 182, 12 pp. | DOI | MR
[8] El-Sabaa, F. M., Hosny, M., and Zakria, S. K., “Bifurcations of Armbruster Guckenheimer Kim Galactic Potential”, Astrophys. Space Sci., 364:2 (2019), 34, 9 pp. | DOI | MR
[9] Guillemin, V. and Pollack, A., Differential Topology, Prentice-Hall, Englewood Cliffs, N.J., 1974, xvi+222 pp. | MR | Zbl
[10] Han, Y., Li, Y., and Yi, Y., “Invariant Tori in Hamiltonian Systems with High Order Proper Degeneracy”, Ann. Henri Poincaré, 10:8 (2010), 1419–1436 | DOI | MR | Zbl
[11] Hirsch, M. W., Differential Topology, Grad. Texts in Math., 33, Springer, New York, 1976, 222 pp. | DOI | MR | Zbl
[12] Llibre, J. and Roberto, L., “Periodic Orbits and Non-Integrability of Armbruster – Guckenheimer – Kim Potential”, Astrophys. Space Sci., 343:1 (2013), 69–74 | DOI | Zbl
[13] Llibre, J. and Valls, C., “Global Dynamics of the Integrable Armbruster – Guckenheimer – Kim Galactic Potential”, Astrophys. Space Sci., 364:8 (2019), 130, 6 pp. | DOI | MR
[14] Meyer, K. R., Palacián, J. F., Yanguas, P., and Dumas, H. S., “Periodic Solutions in Hamiltonian Systems, Averaging, and the Lunar Problem”, SIAM J. Appl. Dyn. Syst., 7:2 (2008), 311–340 | DOI | MR | Zbl
[15] Meyer, K. R., Palacián, J., and Yanguas, P., “Geometric Averaging of Hamiltonian Systems: Periodic Solutions, Stability, and KAM Tori”, SIAM J. Appl. Dyn. Syst., 10:3 (2011), 817–856 | DOI | MR | Zbl
[16] Meyer, K. R. and Offin, D. C., Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem, Appl. Math. Sci., 90, 3rd ed., Springer, Cham, 2017, xiii + 384 pp. | DOI | MR | Zbl
[17] Meyer, K. R., Palacián, J. F., and Yanguas, P., “Singular Reduction of Resonant Hamiltonians”, Nonlinearity, 31:6 (2018), 2854–2894 | DOI | MR | Zbl
[18] Meyer, K. R., Palacián, J. F., and Yanguas, P., Reduction of Resonant Hamiltonians with $N$ Degrees of Freedom, Preprint, 2019 | MR
[19] Moser, J., “Regularization of Kepler's Problem and the Averaging Method on a Manifold”, Comm. Pure Appl. Math., 23 (1970), 609–636 | DOI | MR | Zbl
[20] Reeb, G., “Sur certaines propriétés topologiques des trajectoires des systèmes dynamiques”, Acad. Roy. Belg. Cl. Sci. Mém. Coll. in $8^\circ$, 27:9 (1952), 64 pp. | MR | Zbl
[21] Simonelli, F. and Gollub, J. P., “Surface Wave Mode Interactions: Effects of Symmetry and Degeneracy”, J. Fluid Mech., 199 (1989), 471–494 | DOI | MR