Armbruster – Guckenheimer – Kim Hamiltonian System
Russian journal of nonlinear dynamics, Tome 17 (2021) no. 1, pp. 59-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article deals with the autonomous two-degree-of-freedom Hamiltonian system with Armbruster – Guckenheimer – Kim galactic potential in 1:1 resonance depending on two parameters. We detect periodic solutions and KAM 2-tori arising from linearly stable periodic solutions not found in earlier papers. These are established by using reduction, normalization, averaging and KAM techniques.
Keywords: galactic potential, Hamiltonian system, normalization and reduction, KAM tori, reduced space, periodic orbits.
@article{ND_2021_17_1_a5,
     author = {M. Alvarez-Ram{\'\i}rez and A. Garc{\'\i}a and J. Vidarte},
     title = {Armbruster {\textendash} {Guckenheimer} {\textendash} {Kim} {Hamiltonian} {System}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {59--76},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2021_17_1_a5/}
}
TY  - JOUR
AU  - M. Alvarez-Ramírez
AU  - A. García
AU  - J. Vidarte
TI  - Armbruster – Guckenheimer – Kim Hamiltonian System
JO  - Russian journal of nonlinear dynamics
PY  - 2021
SP  - 59
EP  - 76
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2021_17_1_a5/
LA  - en
ID  - ND_2021_17_1_a5
ER  - 
%0 Journal Article
%A M. Alvarez-Ramírez
%A A. García
%A J. Vidarte
%T Armbruster – Guckenheimer – Kim Hamiltonian System
%J Russian journal of nonlinear dynamics
%D 2021
%P 59-76
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2021_17_1_a5/
%G en
%F ND_2021_17_1_a5
M. Alvarez-Ramírez; A. García; J. Vidarte. Armbruster – Guckenheimer – Kim Hamiltonian System. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 1, pp. 59-76. http://geodesic.mathdoc.fr/item/ND_2021_17_1_a5/

[1] Acosta-Humánez, P., Alvarez-Ramírez, M., and Stuchi, T. J., “Nonintegrability of the Armbruster – Guckenheimer – Kim Quartic Hamiltonian through Morales – Ramis Theory”, SIAM J. Appl. Dyn. Syst., 17:1 (2018), 78–96 | DOI | MR | Zbl

[2] Andrle, P., “A Third Integral of Motion in a System with a Potential of the Fourth Degree”, Phys. Lett. A, 17:4 (1966), 169–175 | DOI | Zbl

[3] Armbruster, D., Guckenheimer, J., and Kim, S.-H., “Chaotic Dynamics in Systems with Square Symmetry”, Phys. Lett. A, 140:7–8 (1989), 416–420 | DOI | MR

[4] Blesa, F., Piasecki, S., Dena, A., and Barrio, R., “Connecting Symmetric and Asymmetric Families of Periodic Orbits in Squared Symmetric Hamiltonians”, Int. J. Mod. Phys. C, 23:2 (2012), 1250014, 22 pp. | DOI | MR | Zbl

[5] Deprit, A., “The Lissajous Transformation: 1. Basics”, Celest. Mech. Dyn. Astron., 51:3 (1991), 201–225 | DOI | MR | Zbl

[6] Deprit, A. and Elipe, A., “The Lissajous Transformation: 2. Normalization”, Celest. Mech. Dyn. Astron., 51:3 (1991), 227–250 | DOI | MR | Zbl

[7] Elmandouh, A. A., “On the Dynamics of Armbruster Guckenheimer Kim Galactic Potential in a Rotating Reference Frame”, Astrophys. Space Sci., 361:6 (2016), 182, 12 pp. | DOI | MR

[8] El-Sabaa, F. M., Hosny, M., and Zakria, S. K., “Bifurcations of Armbruster Guckenheimer Kim Galactic Potential”, Astrophys. Space Sci., 364:2 (2019), 34, 9 pp. | DOI | MR

[9] Guillemin, V. and Pollack, A., Differential Topology, Prentice-Hall, Englewood Cliffs, N.J., 1974, xvi+222 pp. | MR | Zbl

[10] Han, Y., Li, Y., and Yi, Y., “Invariant Tori in Hamiltonian Systems with High Order Proper Degeneracy”, Ann. Henri Poincaré, 10:8 (2010), 1419–1436 | DOI | MR | Zbl

[11] Hirsch, M. W., Differential Topology, Grad. Texts in Math., 33, Springer, New York, 1976, 222 pp. | DOI | MR | Zbl

[12] Llibre, J. and Roberto, L., “Periodic Orbits and Non-Integrability of Armbruster – Guckenheimer – Kim Potential”, Astrophys. Space Sci., 343:1 (2013), 69–74 | DOI | Zbl

[13] Llibre, J. and Valls, C., “Global Dynamics of the Integrable Armbruster – Guckenheimer – Kim Galactic Potential”, Astrophys. Space Sci., 364:8 (2019), 130, 6 pp. | DOI | MR

[14] Meyer, K. R., Palacián, J. F., Yanguas, P., and Dumas, H. S., “Periodic Solutions in Hamiltonian Systems, Averaging, and the Lunar Problem”, SIAM J. Appl. Dyn. Syst., 7:2 (2008), 311–340 | DOI | MR | Zbl

[15] Meyer, K. R., Palacián, J., and Yanguas, P., “Geometric Averaging of Hamiltonian Systems: Periodic Solutions, Stability, and KAM Tori”, SIAM J. Appl. Dyn. Syst., 10:3 (2011), 817–856 | DOI | MR | Zbl

[16] Meyer, K. R. and Offin, D. C., Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem, Appl. Math. Sci., 90, 3rd ed., Springer, Cham, 2017, xiii + 384 pp. | DOI | MR | Zbl

[17] Meyer, K. R., Palacián, J. F., and Yanguas, P., “Singular Reduction of Resonant Hamiltonians”, Nonlinearity, 31:6 (2018), 2854–2894 | DOI | MR | Zbl

[18] Meyer, K. R., Palacián, J. F., and Yanguas, P., Reduction of Resonant Hamiltonians with $N$ Degrees of Freedom, Preprint, 2019 | MR

[19] Moser, J., “Regularization of Kepler's Problem and the Averaging Method on a Manifold”, Comm. Pure Appl. Math., 23 (1970), 609–636 | DOI | MR | Zbl

[20] Reeb, G., “Sur certaines propriétés topologiques des trajectoires des systèmes dynamiques”, Acad. Roy. Belg. Cl. Sci. Mém. Coll. in $8^\circ$, 27:9 (1952), 64 pp. | MR | Zbl

[21] Simonelli, F. and Gollub, J. P., “Surface Wave Mode Interactions: Effects of Symmetry and Degeneracy”, J. Fluid Mech., 199 (1989), 471–494 | DOI | MR