Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_1_a2, author = {O. V. Pochinka and E. V. Nozdrinova}, title = {Stable {Arcs} {Connecting} {Polar} {Cascades} on a {Torus}}, journal = {Russian journal of nonlinear dynamics}, pages = {23--37}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_1_a2/} }
O. V. Pochinka; E. V. Nozdrinova. Stable Arcs Connecting Polar Cascades on a Torus. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 1, pp. 23-37. http://geodesic.mathdoc.fr/item/ND_2021_17_1_a2/
[1] Afraimovich, V. S. and Shilnikov, L. P., “Certain Global Bifurcations Connected with the Disappearance of a Fixed Point of Saddle-Node Type”, Dokl. Akad. Nauk SSSR, 219 (1974), 1281–1284 (Russian) | MR
[2] Dokl. Akad. Nauk SSSR, 214:4 (1974), 739–742 (Russian) | MR | Zbl
[3] Baer, R., “Isotopie von Kurven auf orientierbaren, geschlossenen Flächen und ihr Zusammenhang mit der topologischen Deformation der Flächen”, J. Reine Angew. Math., 159 (1928), 101–116 | MR | Zbl
[4] Banyaga, A., “On the Structure of the Group of Equivariant Diffeomorphisms”, Topology, 16:3 (1977), 279–283 | DOI | MR | Zbl
[5] Bezdenezhnykh, A. N. and Grines, V. Z., “Dynamical Properties and Topological Classification of Gradient-Like Diffeomorphisms on Two-Dimensional Manifolds: 1”, Selecta Math. Soviet., 11:1 (1992), 1–11 | MR
[6] Blanchard, P. R., “Invariants of the NPT Isotopy Classes of Morse – Smale Diffeomorphisms of Surfaces”, Duke Math. J., 47:1 (1980), 33–46 | DOI | MR | Zbl
[7] Tr. Mat. Inst. Steklova, 256 (2007), 54–69 (Russian) | DOI | MR | Zbl
[8] Fleitas, G., “Replacing Tangencies by Saddle-Nodes”, Bol. Soc. Brasil. Mat., 8:1 (1977), 47–51 | DOI | MR | Zbl
[9] Mat. Sb., 205:10 (2014), 19–46 (Russian) | DOI | DOI | MR | Zbl
[10] Mat. Zametki, 94:6 (2013), 828–845 (Russian) | DOI | DOI | MR | Zbl
[11] Hirsch, M. W., Pugh, C. C., and Shub, M., Invariant Manifolds, Lecture Notes in Math., 583, Springer, New York, 1977, ii+149 pp. | DOI | MR | Zbl
[12] Dokl. Akad. Nauk SSSR, 243:1 (1978), 26–29 (Russian) | MR
[13] Matsumoto, Sh., “There Are Two Isotopic Morse – Smale Diffeomorphisms Which Cannot Be Joined by Simple Arcs”, Invent. Math., 51:1 (1979), 1–7 | DOI | MR | Zbl
[14] Munkres, J., “Obstructions to the Smoothing of Piecewise-Differentiable Homeomorphisms”, Bull. Amer. Math. Soc., 65 (1959), 332–334 | DOI | MR
[15] Newhouse, S., Palis, J., and Takens, F., “Stable Arcs of Diffeomorphisms”, Bull. Amer. Math. Soc., 82:3 (1976), 499–502 | DOI | MR | Zbl
[16] Newhouse, S., Palis, J., and Takens, F., “Bifurcations and Stability of Families of Diffeomorphisms”, Inst. Hautes Études Sci. Publ. Math., 1983, no. 57, 5–71 | DOI | MR | Zbl
[17] Newhouse, S. and Peixoto, M. M., “There Is a Simple Arc Joining Any Two Morse – Smale Flows”, Trois études en dynamique qualitative, Astérisque, 31, Soc. Math. France, Paris, 1976, 15–41 | MR
[18] Nozdrinova, E. V., “Rotation Number As a Complete Topological Invariant of a Simple Isotopic Class of Rough Transformations of a Circle”, Russian J. Nonlinear Dyn., 14:4 (2018), 543–551 | MR | Zbl
[19] Nozdrinova, E. and Pochinka, O., “On the Existence of a Smooth Arc without Bifurcations Joining Source-Sink Diffeomorphisms on the $2$-Sphere”, J. Phys.: Conf. Ser., 990:1 (2018), 012010, 7 pp. | DOI | MR
[20] Nozdrinova, E. and Pochinka, O., “Solution of the 33rd Palis – Pugh Problem for Gradient-Like Diffeomorphisms of a Two-Dimensional Sphere”, Discrete Contin. Dyn. Syst., 41:3 (2021), 1101–1131 | DOI | MR | Zbl
[21] Palis, J. and Pugh, C. C., “Fifty Problems in Dynamical Systems”, Dynamical Systems: Proc. Sympos. Appl. Topology and Dynamical Systems (Univ. Warwick, Coventry, 1973/1974): Presented to E. C. Zeeman on His Fiftieth Birthday, Lecture Notes in Math., 468, ed. A. Manning, Springer, Berlin, 1975, 345–353 | DOI | MR