Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2021_17_1_a1, author = {P. V. Kuptsov and A. V. Kuptsova and N. V. Stankevich}, title = {Artificial {Neural} {Network} as a {Universal} {Model} of {Nonlinear} {Dynamical} {Systems}}, journal = {Russian journal of nonlinear dynamics}, pages = {5--21}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2021_17_1_a1/} }
TY - JOUR AU - P. V. Kuptsov AU - A. V. Kuptsova AU - N. V. Stankevich TI - Artificial Neural Network as a Universal Model of Nonlinear Dynamical Systems JO - Russian journal of nonlinear dynamics PY - 2021 SP - 5 EP - 21 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2021_17_1_a1/ LA - en ID - ND_2021_17_1_a1 ER -
%0 Journal Article %A P. V. Kuptsov %A A. V. Kuptsova %A N. V. Stankevich %T Artificial Neural Network as a Universal Model of Nonlinear Dynamical Systems %J Russian journal of nonlinear dynamics %D 2021 %P 5-21 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2021_17_1_a1/ %G en %F ND_2021_17_1_a1
P. V. Kuptsov; A. V. Kuptsova; N. V. Stankevich. Artificial Neural Network as a Universal Model of Nonlinear Dynamical Systems. Russian journal of nonlinear dynamics, Tome 17 (2021) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/ND_2021_17_1_a1/
[1] Dokl. Akad. Nauk SSSR (N.S.), 108 (1956), 179–182 (Russian) | MR | MR | Zbl
[2] Dokl. Akad. Nauk SSSR, 114 (1957), 953–956 (Russian) | MR | MR | Zbl | Zbl
[3] Dokl. Akad. Nauk SSSR, 114 (1957), 679–681 (Russian) | MR | MR | Zbl | Zbl
[4] Ku̇rková, V., “Kolmogorov's Theorem and Multilayer Neural Networks”, Neural Netw., 5:3 (1992), 501–506 | DOI | MR
[5] Hornik, K., Stinchcombe, M., and White, H., “Multilayer Feedforward Networks Are Universal Approximators”, Neural Netw., 2:5 (1989), 359–366 | DOI | MR | Zbl
[6] Cybenko, G., “Approximation by Superpositions of a Sigmoidal Function”, Math. Control Signals Syst., 2:4 (1989), 303–314 | DOI | MR | Zbl
[7] Hecht-Nielson, R.., “Kolmogorov's Mapping Neural Network Existence Theorem”, Proc. of the IEEE 1st Internat. Conf. on Neural Networks (San Diego, Calif.): Vol. 3, IEEE, Piscataway, N.J., 1987, 11–13
[8] Funahashi, K., “On the Approximate Realization of Continuous Mappings by Neural Networks”, Neural Netw., 2:3 (1989), 183–192 | DOI
[9] Light, W., “Ridge Functions, Sigmoidal Functions and Neural Networks”, Approximation Theory VII, eds. E. W. Cheney, C. K. Chui, L. L. Schumaker, Acad. Press, Boston, 1992, 158–201 | MR
[10] Haykin, S., Neural Networks and Learning Machines, 3rd ed., Pearson, New York, 2009, 936 pp.
[11] Kline, M., Mathematical Thought from Ancient to Modern Times, v. 2, Oxford Univ. Press, New York, 1990, 480 pp. | MR
[12] Kingma, D. P. and Ba, J., Adam: A Method for Stochastic Optimization, 2014, arXiv: 1412.6980 [cs.LG] | Zbl
[13] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Zh., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, Sh., Murray, D., Olah, Ch., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X., TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, , 2015 https://www.tensorflow.org/
[14] Nickolls, J., Buck, I., Garland, M., and Skadron, K., “Scalable Parallel Programming with CUDA”, ACM Queue, 6:2 (2008), 42–53 | DOI
[15] Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems:A Method for Computing All of Them: P. 1: Theory”, Meccanica, 15 (1980), 9–20 | DOI | Zbl
[16] Shimada, I. and Nagashima, T., “A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems”, Prog. Theor. Phys., 61:6 (1979), 1605–1616 | DOI | MR | Zbl
[17] Zhang, G. P., “Neural Networks for Time-Series Forecasting”, Handbook of Natural Computing, eds. G. Rozenberg, Th. Bäck, J. N. Kok, Springer, Berlin, 2012, 461–477 | DOI | MR
[18] Lewis, N. D., Deep Time Series Forecasting with Python: An Intuitive Introduction to Deep Learning for Applied Time Series Modeling, Createspace, Scotts Valley, Calif., 2016, 212 pp.
[19] Brownlee, J., Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python, Machine Learning Mastery, San Francisco, Calif., 2018, 557 pp.
[20] Wei, Y., Zhou, J., Wang, Y., Liu, Y., Liu, Q., Luo, J., Wang, C., Ren, F., and Huang, L., “A Review of Algorithm Hardware Design for AI-Based Biomedical Applications”, IEEE Trans. Biomed. Circuits Syst., 14:2 (2020), 145–163 | DOI | MR
[21] Talib, M. A., Majzoub, S., Nasir, Q., and Jamal, D., “A Systematic Literature Review on Hardware Implementation of Artificial Intelligence Algorithms”, J. Supercomput., 77 (2021), 1897–1938 | DOI
[22] Lorenz, E. N., “Deterministic Nonperiodic Flow”, J. Atmos. Sci., 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[23] Sparrow, C., The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Springer, Berlin, 1982, xii, 270 pp. | MR | Zbl
[24] Schuster, H. G. and Just, W., Deterministic Chaos: An Introduction, rev. and enl., 4th ed., Wiley-VCH, Weinheim, 2005, 312 pp. | MR | Zbl
[25] Rössler, O. E., “An Equation for Continuous Chaos”, Phys. Lett. A, 57:5 (1976), 397–398 | DOI | MR | Zbl
[26] Kuznetsov, S. P., Dynamical Chaos, 2nd ed., Fizmatlit, Moscow, 2006, 356 pp. (Russian)
[27] Hindmarsh, J. L. and Rose, R. M., “A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations”, Proc. R. Soc. Lond. Ser. B Biol. Sci., 221:1222 (1984), 87–102 | DOI
[28] Wang, X.-J., “Genesis of Bursting Oscillations in the Hindmarsh – Rose Model and Homoclinicity to a Chaotic Saddle”, Phys. D, 62:1 (1993), 263–274 | DOI | MR | Zbl
[29] Petzold, L., “Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations”, SIAM J. Sci. Statist. Comput., 4:1 (1983), 136–148 | DOI | MR | Zbl
[30] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A., “Automatic Differentiation in PyTorch”, Proc. of the 31st Conf. on Neural Information Processing Systems (NIPS, Long Beach, Calif., USA, 2017), 4 pp.