Cherry Maps with Different Critical Exponents: Bifurcation of Geometry
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 651-672

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider order-preserving $C^3$ circle maps with a flat piece, irrational rotation number and critical exponents $(l_1, l_2)$. We detect a change in the geometry of the system. For $(l_1, l_2) \in [1, 2]^2$ the geometry is degenerate and becomes bounded for $(l_1, l_2) \in [2, \infty)^2 \backslash \{(2, 2)\}$. When the rotation number is of the form $[abab \ldots]$; for some $a, b \in \mathbb{N}^*$, the geometry is bounded for $(l_1, l_2)$ belonging above a curve defined on $]1, +\infty[^2$. As a consequence, we estimate the Hausdorff dimension of the nonwandering set $K_f=\mathcal{S}^1 \backslash \bigcup^\infty_{i=0}f^{-i}(U)$. Precisely, the Hausdorff dimension of this set is equal to zero when the geometry is degenerate and it is strictly positive when the geometry is bounded.
Keywords: circle map, irrational rotation number, flat piece, critical exponent, geometry
Mots-clés : Hausdorff dimension.
@article{ND_2020_16_4_a8,
     author = {B. Ndawa Tangue},
     title = {Cherry {Maps} with {Different} {Critical} {Exponents:} {Bifurcation} of {Geometry}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {651--672},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_4_a8/}
}
TY  - JOUR
AU  - B. Ndawa Tangue
TI  - Cherry Maps with Different Critical Exponents: Bifurcation of Geometry
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 651
EP  - 672
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_4_a8/
LA  - ru
ID  - ND_2020_16_4_a8
ER  - 
%0 Journal Article
%A B. Ndawa Tangue
%T Cherry Maps with Different Critical Exponents: Bifurcation of Geometry
%J Russian journal of nonlinear dynamics
%D 2020
%P 651-672
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_4_a8/
%G ru
%F ND_2020_16_4_a8
B. Ndawa Tangue. Cherry Maps with Different Critical Exponents: Bifurcation of Geometry. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 651-672. http://geodesic.mathdoc.fr/item/ND_2020_16_4_a8/