Cherry Maps with Different Critical Exponents: Bifurcation of Geometry
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 651-672.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider order-preserving $C^3$ circle maps with a flat piece, irrational rotation number and critical exponents $(l_1, l_2)$. We detect a change in the geometry of the system. For $(l_1, l_2) \in [1, 2]^2$ the geometry is degenerate and becomes bounded for $(l_1, l_2) \in [2, \infty)^2 \backslash \{(2, 2)\}$. When the rotation number is of the form $[abab \ldots]$; for some $a, b \in \mathbb{N}^*$, the geometry is bounded for $(l_1, l_2)$ belonging above a curve defined on $]1, +\infty[^2$. As a consequence, we estimate the Hausdorff dimension of the nonwandering set $K_f=\mathcal{S}^1 \backslash \bigcup^\infty_{i=0}f^{-i}(U)$. Precisely, the Hausdorff dimension of this set is equal to zero when the geometry is degenerate and it is strictly positive when the geometry is bounded.
Keywords: circle map, irrational rotation number, flat piece, critical exponent, geometry
Mots-clés : Hausdorff dimension.
@article{ND_2020_16_4_a8,
     author = {B. Ndawa Tangue},
     title = {Cherry {Maps} with {Different} {Critical} {Exponents:} {Bifurcation} of {Geometry}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {651--672},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_4_a8/}
}
TY  - JOUR
AU  - B. Ndawa Tangue
TI  - Cherry Maps with Different Critical Exponents: Bifurcation of Geometry
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 651
EP  - 672
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_4_a8/
LA  - ru
ID  - ND_2020_16_4_a8
ER  - 
%0 Journal Article
%A B. Ndawa Tangue
%T Cherry Maps with Different Critical Exponents: Bifurcation of Geometry
%J Russian journal of nonlinear dynamics
%D 2020
%P 651-672
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_4_a8/
%G ru
%F ND_2020_16_4_a8
B. Ndawa Tangue. Cherry Maps with Different Critical Exponents: Bifurcation of Geometry. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 651-672. http://geodesic.mathdoc.fr/item/ND_2020_16_4_a8/

[1] de Melo, W. and van Strien, S., “One-Dimensional Dynamics: The Schwarzian Derivative and Beyond”, Bull. Amer. Math. Soc. (N. S.), 18:2 (1988), 159–162 | DOI | MR | Zbl

[2] de Melo, W. and van Strien, S., “A Structure Theorem in One-Dimensional Dynamics”, Ann. of Math. (2), 129:3 (1989), 519–546 | DOI | MR | Zbl

[3] de Melo, W. and van Strien, S., One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. (3), 25, Springer, Berlin, 1993, xiv+605 pp. | MR | Zbl

[4] Graczyk, J., “Dynamics of Circle Maps with Flat Spots”, Fund. Math., 209:3 (2010), 267–290 | DOI | MR | Zbl

[5] Graczyk, J., Jonker, L. B., Świątek, G., Tangerman, F. M., and Veerman, J. J. P., “Differentiable Circle Maps with a Flat Interval”, Commun. Math. Phys., 173:3 (1995), 599–622 | DOI | MR | Zbl

[6] Mendes, P., “A Metric Property of Cherry Vector Fields on the Torus”, J. Differential Equations, 89:2 (1991), 305–316 | DOI | MR | Zbl

[7] Martens, M. and Palmisano, L., Invariant Manifolds for Non-Differentiable Operators, 2017, arXiv: 1704.06328 [math.DS]

[8] Martens, M., Strien, S., Melo, W., and Mendes, P., “On Cherry Flows”, Ergodic Theory Dynam. Systems, 10:3 (1990), 531–554 | DOI | MR | Zbl

[9] Misiurewicz, M., “Rotation Interval for a Class of Maps of the Real Line into Itself”, Ergodic Theory Dynam. Systems, 6:3 (1986), 17–132 | MR

[10] Moreira, P. C. and Gaspar Ruas, A. A., “Metric Properties of Cherry Flows”, J. Differential Equations, 97:1 (1992), 16–26 | DOI | MR | Zbl

[11] Palmisano, L., “A Phase Transition for Circle Maps and Cherry Flows”, Commun. Math. Phys., 321:1 (2013), 135–155 | DOI | MR | Zbl

[12] Palmisano, L., “On Physical Measures for Cherry Flows”, Fund. Math., 232:2 (2016), 167–179 | DOI | MR | Zbl

[13] Palmisano, L., “Cherry Flows with Non-Trivial Attractors”, Fund. Math., 244:3 (2019), 243–253 | DOI | MR | Zbl

[14] Palmisano, L., “Quasi-Symmetric Conjugacy for Circle Maps with a Flat Interval”, Ergodic Theory Dynam. Systems, 39:2 (2019), 425–445 | DOI | MR | Zbl

[15] Palmisano, L. and Tangue, B., A Phase Transition for Circle Maps with a Flat Spot and Different Critical Exponents, 2019, arXiv: 1907.10909 [math.DS]

[16] Swiątek, G., “Rational Rotation Numbers for Maps of the Circle”, Commun. Math. Phys., 119:1 (1988), 109–128 | DOI | MR

[17] Tangerman, F. M. and Veerman, J. J. P., “Scalings in Circle Maps: 1”, Commun. Math. Phys., 134:1 (1990), 89–107 | DOI | MR | Zbl

[18] Tangerman, F. M. and Veerman, J. J. P., “Scalings in Circle Maps: 2”, Commun. Math. Phys., 141:3 (1991), 279–291 | DOI | MR | Zbl

[19] Veerman, J. J. P., “Irrational Rotation Numbers”, Nonlinearity, 3:3 (1989), 419–428 | DOI | MR | Zbl