A Note on Tonelli Lagrangian Systems on $\mathbb{T}^2$ with Positive Topological Entropy on a High Energy Level
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 625-635.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we study the dynamical behavior of Tonelli Lagrangian systems defined on the tangent bundle of the torus $\mathbb{T}^2=\mathbb{R}^2/\mathbb{Z}^2$. We prove that the Lagrangian flow restricted to a high energy level $E_{L}^{-1}(c)$ (i.e., $c > c_0(L)$) has positive topological entropy if the flow satisfies the Kupka-Smale property in $E_{L}^{-1}(c)$ (i.e., all closed orbits with energy c are hyperbolic or elliptic and all heteroclinic intersections are transverse on $E_{L}^{-1}(c)$). The proof requires the use of well-known results from Aubry – Mather theory.
Keywords: Tonelli Lagrangian system, Aubry – Mather theory, static classes.
@article{ND_2020_16_4_a6,
     author = {J. G. Damasceno and J. G. Miranda and L. G. Perona Ara\'ujo},
     title = {A {Note} on {Tonelli} {Lagrangian} {Systems} on $\mathbb{T}^2$ with {Positive} {Topological} {Entropy} on a {High} {Energy} {Level}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {625--635},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_4_a6/}
}
TY  - JOUR
AU  - J. G. Damasceno
AU  - J. G. Miranda
AU  - L. G. Perona Araújo
TI  - A Note on Tonelli Lagrangian Systems on $\mathbb{T}^2$ with Positive Topological Entropy on a High Energy Level
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 625
EP  - 635
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_4_a6/
LA  - ru
ID  - ND_2020_16_4_a6
ER  - 
%0 Journal Article
%A J. G. Damasceno
%A J. G. Miranda
%A L. G. Perona Araújo
%T A Note on Tonelli Lagrangian Systems on $\mathbb{T}^2$ with Positive Topological Entropy on a High Energy Level
%J Russian journal of nonlinear dynamics
%D 2020
%P 625-635
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_4_a6/
%G ru
%F ND_2020_16_4_a6
J. G. Damasceno; J. G. Miranda; L. G. Perona Araújo. A Note on Tonelli Lagrangian Systems on $\mathbb{T}^2$ with Positive Topological Entropy on a High Energy Level. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 625-635. http://geodesic.mathdoc.fr/item/ND_2020_16_4_a6/

[1] Carneiro, M. J. Dias, “On Minimizing Measures of the Action of Autonomous Lagrangians”, Nonlinearity, 8:6 (1995), 1077–1085 | DOI | MR | Zbl

[2] Contreras, G., Delgado, J., and Iturriaga, R., “Lagrangian Flows: The Dynamics of Globally Minimizing Orbits: 2”, Bol. Soc. Brasil. Mat. (N. S.), 28:2 (1997), 155–196 | DOI | MR | Zbl

[3] Contreras, G. and Iturriaga, R., “Convex Hamiltonians without Conjugate Points”, Ergodic Theory Dynam. Systems, 19:4 (1999), 901–952 | DOI | MR | Zbl

[4] Contreras, G. and Iturriaga, R., “Global Minimizers of Autonomous Lagrangians”, 22$\sp {\rm o}$ Colóquio Brasileiro de Matemática, IMPA, Rio de Janeiro, 1999, 148 pp. | MR | Zbl

[5] Contreras, G. and Paternain, G. P., “Connecting Orbits between Static Classes for Generic Lagrangian Systems”, Topology, 41:4 (2002), 645–666 | DOI | MR | Zbl

[6] Katok, A. B., “Ergodic Perturbations of Degenerate Integrable Hamiltonian Systems”, Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973) (Russian) | MR

[7] Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, 802 pp. | MR | Zbl

[8] Mañé, R., “Lagrangian Flows: The Dynamics of Globally Minimizing Orbits”, Internat. Conf. on Dynamical Systems (Montevideo, 1995), Pitman Res. Notes Math. Ser., 362, Longman, Harlow, 1996, 120–131 | MR | Zbl

[9] Massart, D., “Stable Norms of Surfaces: Local Structure of the Unit Ball of Rational Directions”, Geom. Funct. Anal., 7:6 (1997), 996–1010 | DOI | MR | Zbl

[10] Mather, J., “Action Minimizing Invariant Measures for Positive Definite Lagrangian Systems”, Math. Z., 207:2 (1991), 169–207 | DOI | MR | Zbl

[11] Mather, J., “Variational Construction of Connecting Orbits”, Ann. Inst. Fourier (Grenoble), 43:5 (1993), 1349–1386 | DOI | MR | Zbl

[12] Oliveira, E., “Generic Properties of Lagrangians on Surfaces: The Kupka – Smale Theorem”, Discrete Contin. Dyn. Syst., 21:2 (2008), 551–569 | DOI | MR | Zbl

[13] Paternain, G., “Entropy and Completely Integrable Hamiltonian Systems”, Proc. Amer. Math. Soc., 113:3 (1991), 871–873 | DOI | MR | Zbl

[14] Rockafellar, T., Convex Analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, N.J., 1970, xviii+451 pp. | MR

[15] Rifford, L. and Ruggiero, R., “Generic Properties of Closed Orbits for Hamiltonian Flows from Mañé Viewpoint”, Int. Math. Res. Not., 2012:22 (2012), 5246–5265 | DOI | MR | Zbl

[16] Schröder, J. Ph., “Invariant Tori and Topological Entropy in Tonelli Lagrangian Systems on the $2$-Torus”, Ergodic Theory Dynam. Systems, 36:6 (2016), 1989–2014 | DOI | MR | Zbl