Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_4_a6, author = {J. G. Damasceno and J. G. Miranda and L. G. Perona Ara\'ujo}, title = {A {Note} on {Tonelli} {Lagrangian} {Systems} on $\mathbb{T}^2$ with {Positive} {Topological} {Entropy} on a {High} {Energy} {Level}}, journal = {Russian journal of nonlinear dynamics}, pages = {625--635}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_4_a6/} }
TY - JOUR AU - J. G. Damasceno AU - J. G. Miranda AU - L. G. Perona Araújo TI - A Note on Tonelli Lagrangian Systems on $\mathbb{T}^2$ with Positive Topological Entropy on a High Energy Level JO - Russian journal of nonlinear dynamics PY - 2020 SP - 625 EP - 635 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_4_a6/ LA - ru ID - ND_2020_16_4_a6 ER -
%0 Journal Article %A J. G. Damasceno %A J. G. Miranda %A L. G. Perona Araújo %T A Note on Tonelli Lagrangian Systems on $\mathbb{T}^2$ with Positive Topological Entropy on a High Energy Level %J Russian journal of nonlinear dynamics %D 2020 %P 625-635 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2020_16_4_a6/ %G ru %F ND_2020_16_4_a6
J. G. Damasceno; J. G. Miranda; L. G. Perona Araújo. A Note on Tonelli Lagrangian Systems on $\mathbb{T}^2$ with Positive Topological Entropy on a High Energy Level. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 625-635. http://geodesic.mathdoc.fr/item/ND_2020_16_4_a6/
[1] Carneiro, M. J. Dias, “On Minimizing Measures of the Action of Autonomous Lagrangians”, Nonlinearity, 8:6 (1995), 1077–1085 | DOI | MR | Zbl
[2] Contreras, G., Delgado, J., and Iturriaga, R., “Lagrangian Flows: The Dynamics of Globally Minimizing Orbits: 2”, Bol. Soc. Brasil. Mat. (N. S.), 28:2 (1997), 155–196 | DOI | MR | Zbl
[3] Contreras, G. and Iturriaga, R., “Convex Hamiltonians without Conjugate Points”, Ergodic Theory Dynam. Systems, 19:4 (1999), 901–952 | DOI | MR | Zbl
[4] Contreras, G. and Iturriaga, R., “Global Minimizers of Autonomous Lagrangians”, 22$\sp {\rm o}$ Colóquio Brasileiro de Matemática, IMPA, Rio de Janeiro, 1999, 148 pp. | MR | Zbl
[5] Contreras, G. and Paternain, G. P., “Connecting Orbits between Static Classes for Generic Lagrangian Systems”, Topology, 41:4 (2002), 645–666 | DOI | MR | Zbl
[6] Katok, A. B., “Ergodic Perturbations of Degenerate Integrable Hamiltonian Systems”, Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973) (Russian) | MR
[7] Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, 802 pp. | MR | Zbl
[8] Mañé, R., “Lagrangian Flows: The Dynamics of Globally Minimizing Orbits”, Internat. Conf. on Dynamical Systems (Montevideo, 1995), Pitman Res. Notes Math. Ser., 362, Longman, Harlow, 1996, 120–131 | MR | Zbl
[9] Massart, D., “Stable Norms of Surfaces: Local Structure of the Unit Ball of Rational Directions”, Geom. Funct. Anal., 7:6 (1997), 996–1010 | DOI | MR | Zbl
[10] Mather, J., “Action Minimizing Invariant Measures for Positive Definite Lagrangian Systems”, Math. Z., 207:2 (1991), 169–207 | DOI | MR | Zbl
[11] Mather, J., “Variational Construction of Connecting Orbits”, Ann. Inst. Fourier (Grenoble), 43:5 (1993), 1349–1386 | DOI | MR | Zbl
[12] Oliveira, E., “Generic Properties of Lagrangians on Surfaces: The Kupka – Smale Theorem”, Discrete Contin. Dyn. Syst., 21:2 (2008), 551–569 | DOI | MR | Zbl
[13] Paternain, G., “Entropy and Completely Integrable Hamiltonian Systems”, Proc. Amer. Math. Soc., 113:3 (1991), 871–873 | DOI | MR | Zbl
[14] Rockafellar, T., Convex Analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, N.J., 1970, xviii+451 pp. | MR
[15] Rifford, L. and Ruggiero, R., “Generic Properties of Closed Orbits for Hamiltonian Flows from Mañé Viewpoint”, Int. Math. Res. Not., 2012:22 (2012), 5246–5265 | DOI | MR | Zbl
[16] Schröder, J. Ph., “Invariant Tori and Topological Entropy in Tonelli Lagrangian Systems on the $2$-Torus”, Ergodic Theory Dynam. Systems, 36:6 (2016), 1989–2014 | DOI | MR | Zbl