On Nonlinear Oscillations and Stability of Coupled Pendulums in the Case of a Multiple Resonance
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 607-623.

Voir la notice de l'article provenant de la source Math-Net.Ru

The points of suspension of two identical pendulums moving in a homogeneous gravitational field are located on a horizontal beam performing harmonic oscillations of small amplitude along a fixed horizontal straight line passing through the points of suspension of the pendulums. The pendulums are connected to each other by a spring of low stiffness. It is assumed that the partial frequency of small oscillations of each pendulum is exactly equal to the frequency of horizontal oscillations of the beam. This implies that a multiple resonance occurs in this problem, when the frequency of external periodic action on the system is equal simultaneously to two its frequencies of small (linear) natural oscillations. This paper solves the nonlinear problem of the existence and stability of periodic motions of pendulums with a period equal to the period of oscillations of the beam. The study uses the classical methods due to Lyapunov and Poincaré, KAM (Kolmogorov, Arnold and Moser) theory, and algorithms of computer algebra. The existence and uniqueness of the periodic motion of pendulums are shown, its analytic representation as a series is obtained, and its stability is investigated. For sufficiently small oscillation amplitudes of the beam, depending on the value of the dimensionless parameter which characterizes the stiffness of the spring connecting the pendulums, the found periodic motion is either Lyapunov unstable or stable for most (in the sense of Lebesgue measure) initial conditions or formally stable (stable in an arbitrarily large, but finite, nonlinear approximation).
Keywords: nonlinear oscillations, resonance, stability, canonical transformations.
@article{ND_2020_16_4_a5,
     author = {A. P. Markeev and T. N. Chekhovskaya},
     title = {On {Nonlinear} {Oscillations} and {Stability} of {Coupled} {Pendulums} in the {Case} of a {Multiple} {Resonance}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {607--623},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_4_a5/}
}
TY  - JOUR
AU  - A. P. Markeev
AU  - T. N. Chekhovskaya
TI  - On Nonlinear Oscillations and Stability of Coupled Pendulums in the Case of a Multiple Resonance
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 607
EP  - 623
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_4_a5/
LA  - ru
ID  - ND_2020_16_4_a5
ER  - 
%0 Journal Article
%A A. P. Markeev
%A T. N. Chekhovskaya
%T On Nonlinear Oscillations and Stability of Coupled Pendulums in the Case of a Multiple Resonance
%J Russian journal of nonlinear dynamics
%D 2020
%P 607-623
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_4_a5/
%G ru
%F ND_2020_16_4_a5
A. P. Markeev; T. N. Chekhovskaya. On Nonlinear Oscillations and Stability of Coupled Pendulums in the Case of a Multiple Resonance. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 607-623. http://geodesic.mathdoc.fr/item/ND_2020_16_4_a5/

[1] Markeev, A. P., “Nonlinear Oscillations of Sympathetic Pendulums”, Nelin. Dinam., 6:3 (2010), 605–621 (Russian) | DOI | MR

[2] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2013, no. 4, 20–30 (Russian) | DOI

[3] Markeev, A. P., “A Motion of Connected Pendulums”, Nelin. Dinam., 9:1 (2013), 27–38 (Russian) | DOI | MR

[4] Markeev, A. P. and Chekhovskaya, T. N., “On Forced Oscillations of Sympathetic Pendulums”, 46th All-Russian Conf. on Problems of Mathematics, Computer Science, Physics and Chemistry. Section of Mathematics and Informatics (RUDN, Moscow, Apr 2010): Thesis of Reports, 154–156 (Russian)

[5] Malkin, I. G., Theory of Stability of Motion, Univ. of Michigan, Ann Arbor, Mich., 1958, 472 pp.

[6] Malkin, I. G., Some Problems in the Theory of Nonlinear Oscillations: In 2 Vols., United States Atomic Energy Commission, Technical Information Service, Germantown, Md., 1959 | MR

[7] Birkhoff, G. D., Dynamical Systems, AMS Coll. Publ., 9, AMS, Providence, RI, 1966, 305 pp. | MR

[8] Giacaglia, G. E. O., Perturbation Methods in Non-Linear Systems, Appl. Math. Sci., 8, Springer, New York, 1972, ix, 369 pp. | DOI | MR | Zbl

[9] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl

[10] Moser, J. K., Lectures on Hamiltonian Systems, Mem. Amer. Math. Soc., 81, AMS, Providence, R.I., 1968, 60 pp. | MR

[11] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)

[12] Korteweg, D. J., “Sur certaines vibrations d'ordre supérieur et d'intensité anormale — vibrations de relations, — dans les mécanismes à plusieurs degrés de liberté”, Arch. Néerl. sci. exactes et natur. Sér. 2, 1 (1898), 229–260 | Zbl

[13] Beth, H. I. E., “Les oscillations autour d'une position dans le cas d'existence d'une relation linéaire simple entre les nombres vibratoires”, Arch. Néerl. sci. exactes et natur. Sér. 2, 15 (1910), 246–283 | Zbl

[14] Beth, H. I. E., “Les oscillations autour d'une position dans le cas d'existence d'une relation linéaire simple entre les nombres vibratoires (suite)”, Arch. Néerl. sci. exactes et natur. Sér. 3A, 1 (1912), 185–213

[15] Prikl. Mat. Mekh., 75:6 (2011), 901–922 (Russian) | DOI | MR

[16] Hénon, M. and Heiles, C., “The Applicability of the Third Integral of Motion: Some Numerical Experiments”, Astronom. J., 69:1 (1964), 73–79 | MR

[17] Roels, J., “An Extension to Resonant Cases of Liapunov's Theorem Concerning the Periodic Solutions near a Hamiltonian Equilibrium”, J. Differential Equations, 9:2 (1971), 300–324 | DOI | MR | Zbl

[18] Braun, M., “On the Applicability of the Third Integral of Motion”, J. Differential Equations, 13:2 (1973), 300–318 | DOI | MR | Zbl

[19] Breiter, S. and Elipe, A., “Pseudo-Oscillator with a Quartic Perturbation”, Mech. Res. Comm., 28:2 (2001), 119–126 | DOI | MR | Zbl

[20] Kholostova, O. V. and Safonov, A. I., “Investigation of the Motions of an Autonomous Hamiltonian System at a $1:1$ Resonance”, Regul. Chaotic Dyn., 22:7 (2017), 792–807 | DOI | MR | Zbl

[21] Prikl. Mat. Mekh., 76:1 (2012), 52–68 (Russian) | DOI | MR

[22] Markeev, A. P., “On Nonlinear Resonant Oscillations of a Rigid Body Generated by Its Conical Precession”, Russian J. Nonlinear Dyn., 14:4 (2018), 503–518 | MR | Zbl

[23] Kholostova, O. V., “On the Motions of One Near-Autonomous Hamiltonian System at a $1:1:1$ Resonance”, Regul. Chaotic Dyn., 24:3 (2019), 235–265 | DOI | MR | Zbl

[24] Bardin, B. S. and Maciejewski, A. J., “Transcendental Case in Stability Problem of Hamiltonian System with Two Degrees of Freedom in Presence of First Order Resonance”, Qual. Theory Dyn. Syst., 12:1 (2013), 207–216 | DOI | MR | Zbl

[25] Kholostova, O. V., “Motions of a Two-Degree-of-Freedom Hamiltonian System in the Presence of Multiple Third-Order Resonances”, Nelin. Dinam., 8:2 (2012), 267–288 (Russian) | DOI | MR

[26] Kholostova, O. V., “Stability of Triangular Libration Points in a Planar Restricted Elliptic Three Body Problem in Cases of Double Resonances”, Int. J. Non Linear Mech., 73 (2015), 64–68 | DOI

[27] Kholostova, O. V., “The Interaction of Resonances of the Third and Fourth Orders in a Hamiltonian Two-Degree-of-Freedom System”, Nelin. Dinam., 11:4 (2015), 671–683 (Russian) | DOI | MR

[28] Safonov, A. I. and Kholostova, O. V., “On the Periodic Motions of a Hamiltonian System in the Neighborhood of Unstable Equilibrium in the Presence of a Double Three-Order Resonance”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:3 (2016), 418–438 (Russian) | DOI | MR | Zbl

[29] Kholostova, O. V., “On Periodic Motions of a Nonautonomous Hamiltonian System in One Case of Multiple Parametric Resonance”, Nelin. Dinam., 13:4 (2017), 477–504 (Russian) | DOI | MR | Zbl

[30] Safonov, A. I. and Kholostova, O. V., “On Periodic Motions of a Symmetrical Satellite in an Orbit with Small Eccentricity in the Case of Multiple Combinational Resonance of the Third and Fourth Orders”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:3 (2018), 373–394 (Russian) | DOI | MR | Zbl

[31] Prikl. Mat. Mekh., 83:2 (2019), 175–201 (Russian) | DOI | MR | Zbl

[32] Kholostova, O. V., “On Multiple Fourth-Order Resonances in a Nonautonomous Two-Degree-of-Freedom Hamiltonian System”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:2 (2019), 275–294 (Russian) | DOI | MR | Zbl

[33] Markeev, A. P., Linear Hamiltonian Systems and Some Problems on Stability of Motion of a Satellite about Its Center of Mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009, 396 pp. (Russian) | MR

[34] Dokl. Akad. Nauk SSSR (N. S.), 98 (1954), 527–530 (Russian) | DOI | MR | MR | Zbl

[35] Uspekhi Mat. Nauk, 18:5 (1963), 13–40 (Russian) | DOI | MR | Zbl

[36] Uspekhi Mat. Nauk, 18:6 (1963), 91–192 (Russian) | DOI | MR | Zbl

[37] Arnol'd, V. I., Mathematical Methods of Classical Mechanics, Grad. Texts in Math., 60, 2nd ed., Springer, New York, 1997, 529 pp. | MR

[38] Funkts. Anal. Prilozh., 5:4 (1971), 82–83 (Russian) | DOI | MR | MR

[39] Uspekhi Mat. Nauk, 32:6(198) (1977), 5–66 | DOI | MR | Zbl | Zbl

[40] Tr. Semin. Petrovsk., 1979, no. 5, 5–50 (Russian) | MR | Zbl

[41] Moser, J., “New Aspects in the Theory of Stability of Hamiltonian Systems”, Comm. Pure Appl. Math., 11:1 (1958), 81–114 | DOI | MR | Zbl

[42] Moser, J., “Stabilitätsverhalten kanonischer Differentialgleichungssysteme”, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa, 1955 (1955), 87–120 | MR | Zbl

[43] Moser, J., “On the Elimination of the Irrationality Condition and Birkhoff's Concept of Complete Stability”, Bol. Soc. Mat. Mexicana (2), 5 (1960), 167–175 | MR | Zbl

[44] Moser, J., “Stability of the Asteroids”, Astron. J., 63:10 (1958), 439–443 | DOI

[45] Siegel C. L., Vorlesungen über Himmelsmechanik, Grundlehren Math. Wiss., 85, Springer, Berlin, 1956, 212 pp. | MR

[46] Glimm, J., “Formal Stability of Hamiltonian Systems”, Comm. Pure Appl. Math., 17:4 (1964), 509–526 | DOI | MR | Zbl

[47] Mat. Zametki, 1:3 (1967), 325–330 (Russian) | DOI | MR | Zbl

[48] Bruno, A. D., The Restricted $3$-Body Problem: Plane Periodic Orbits, de Gruyter Exp. Math., 17, Walter de Gruyter Co., Berlin, 1994, xiv+362 pp. | MR

[49] Gel'fond, A. O., Solving Equations in Integers, Dover, Mineola, N.Y., 2018, 80 pp.

[50] Kholostova, O. V., Problems of Dynamics of Solids with Vibrating Suspension, R Dynamics, Institute of Computer Science, Izhevsk, 2016, 308 pp. (Russian)