Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_4_a5, author = {A. P. Markeev and T. N. Chekhovskaya}, title = {On {Nonlinear} {Oscillations} and {Stability} of {Coupled} {Pendulums} in the {Case} of a {Multiple} {Resonance}}, journal = {Russian journal of nonlinear dynamics}, pages = {607--623}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_4_a5/} }
TY - JOUR AU - A. P. Markeev AU - T. N. Chekhovskaya TI - On Nonlinear Oscillations and Stability of Coupled Pendulums in the Case of a Multiple Resonance JO - Russian journal of nonlinear dynamics PY - 2020 SP - 607 EP - 623 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_4_a5/ LA - ru ID - ND_2020_16_4_a5 ER -
%0 Journal Article %A A. P. Markeev %A T. N. Chekhovskaya %T On Nonlinear Oscillations and Stability of Coupled Pendulums in the Case of a Multiple Resonance %J Russian journal of nonlinear dynamics %D 2020 %P 607-623 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2020_16_4_a5/ %G ru %F ND_2020_16_4_a5
A. P. Markeev; T. N. Chekhovskaya. On Nonlinear Oscillations and Stability of Coupled Pendulums in the Case of a Multiple Resonance. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 4, pp. 607-623. http://geodesic.mathdoc.fr/item/ND_2020_16_4_a5/
[1] Markeev, A. P., “Nonlinear Oscillations of Sympathetic Pendulums”, Nelin. Dinam., 6:3 (2010), 605–621 (Russian) | DOI | MR
[2] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2013, no. 4, 20–30 (Russian) | DOI
[3] Markeev, A. P., “A Motion of Connected Pendulums”, Nelin. Dinam., 9:1 (2013), 27–38 (Russian) | DOI | MR
[4] Markeev, A. P. and Chekhovskaya, T. N., “On Forced Oscillations of Sympathetic Pendulums”, 46th All-Russian Conf. on Problems of Mathematics, Computer Science, Physics and Chemistry. Section of Mathematics and Informatics (RUDN, Moscow, Apr 2010): Thesis of Reports, 154–156 (Russian)
[5] Malkin, I. G., Theory of Stability of Motion, Univ. of Michigan, Ann Arbor, Mich., 1958, 472 pp.
[6] Malkin, I. G., Some Problems in the Theory of Nonlinear Oscillations: In 2 Vols., United States Atomic Energy Commission, Technical Information Service, Germantown, Md., 1959 | MR
[7] Birkhoff, G. D., Dynamical Systems, AMS Coll. Publ., 9, AMS, Providence, RI, 1966, 305 pp. | MR
[8] Giacaglia, G. E. O., Perturbation Methods in Non-Linear Systems, Appl. Math. Sci., 8, Springer, New York, 1972, ix, 369 pp. | DOI | MR | Zbl
[9] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl
[10] Moser, J. K., Lectures on Hamiltonian Systems, Mem. Amer. Math. Soc., 81, AMS, Providence, R.I., 1968, 60 pp. | MR
[11] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)
[12] Korteweg, D. J., “Sur certaines vibrations d'ordre supérieur et d'intensité anormale — vibrations de relations, — dans les mécanismes à plusieurs degrés de liberté”, Arch. Néerl. sci. exactes et natur. Sér. 2, 1 (1898), 229–260 | Zbl
[13] Beth, H. I. E., “Les oscillations autour d'une position dans le cas d'existence d'une relation linéaire simple entre les nombres vibratoires”, Arch. Néerl. sci. exactes et natur. Sér. 2, 15 (1910), 246–283 | Zbl
[14] Beth, H. I. E., “Les oscillations autour d'une position dans le cas d'existence d'une relation linéaire simple entre les nombres vibratoires (suite)”, Arch. Néerl. sci. exactes et natur. Sér. 3A, 1 (1912), 185–213
[15] Prikl. Mat. Mekh., 75:6 (2011), 901–922 (Russian) | DOI | MR
[16] Hénon, M. and Heiles, C., “The Applicability of the Third Integral of Motion: Some Numerical Experiments”, Astronom. J., 69:1 (1964), 73–79 | MR
[17] Roels, J., “An Extension to Resonant Cases of Liapunov's Theorem Concerning the Periodic Solutions near a Hamiltonian Equilibrium”, J. Differential Equations, 9:2 (1971), 300–324 | DOI | MR | Zbl
[18] Braun, M., “On the Applicability of the Third Integral of Motion”, J. Differential Equations, 13:2 (1973), 300–318 | DOI | MR | Zbl
[19] Breiter, S. and Elipe, A., “Pseudo-Oscillator with a Quartic Perturbation”, Mech. Res. Comm., 28:2 (2001), 119–126 | DOI | MR | Zbl
[20] Kholostova, O. V. and Safonov, A. I., “Investigation of the Motions of an Autonomous Hamiltonian System at a $1:1$ Resonance”, Regul. Chaotic Dyn., 22:7 (2017), 792–807 | DOI | MR | Zbl
[21] Prikl. Mat. Mekh., 76:1 (2012), 52–68 (Russian) | DOI | MR
[22] Markeev, A. P., “On Nonlinear Resonant Oscillations of a Rigid Body Generated by Its Conical Precession”, Russian J. Nonlinear Dyn., 14:4 (2018), 503–518 | MR | Zbl
[23] Kholostova, O. V., “On the Motions of One Near-Autonomous Hamiltonian System at a $1:1:1$ Resonance”, Regul. Chaotic Dyn., 24:3 (2019), 235–265 | DOI | MR | Zbl
[24] Bardin, B. S. and Maciejewski, A. J., “Transcendental Case in Stability Problem of Hamiltonian System with Two Degrees of Freedom in Presence of First Order Resonance”, Qual. Theory Dyn. Syst., 12:1 (2013), 207–216 | DOI | MR | Zbl
[25] Kholostova, O. V., “Motions of a Two-Degree-of-Freedom Hamiltonian System in the Presence of Multiple Third-Order Resonances”, Nelin. Dinam., 8:2 (2012), 267–288 (Russian) | DOI | MR
[26] Kholostova, O. V., “Stability of Triangular Libration Points in a Planar Restricted Elliptic Three Body Problem in Cases of Double Resonances”, Int. J. Non Linear Mech., 73 (2015), 64–68 | DOI
[27] Kholostova, O. V., “The Interaction of Resonances of the Third and Fourth Orders in a Hamiltonian Two-Degree-of-Freedom System”, Nelin. Dinam., 11:4 (2015), 671–683 (Russian) | DOI | MR
[28] Safonov, A. I. and Kholostova, O. V., “On the Periodic Motions of a Hamiltonian System in the Neighborhood of Unstable Equilibrium in the Presence of a Double Three-Order Resonance”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:3 (2016), 418–438 (Russian) | DOI | MR | Zbl
[29] Kholostova, O. V., “On Periodic Motions of a Nonautonomous Hamiltonian System in One Case of Multiple Parametric Resonance”, Nelin. Dinam., 13:4 (2017), 477–504 (Russian) | DOI | MR | Zbl
[30] Safonov, A. I. and Kholostova, O. V., “On Periodic Motions of a Symmetrical Satellite in an Orbit with Small Eccentricity in the Case of Multiple Combinational Resonance of the Third and Fourth Orders”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:3 (2018), 373–394 (Russian) | DOI | MR | Zbl
[31] Prikl. Mat. Mekh., 83:2 (2019), 175–201 (Russian) | DOI | MR | Zbl
[32] Kholostova, O. V., “On Multiple Fourth-Order Resonances in a Nonautonomous Two-Degree-of-Freedom Hamiltonian System”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:2 (2019), 275–294 (Russian) | DOI | MR | Zbl
[33] Markeev, A. P., Linear Hamiltonian Systems and Some Problems on Stability of Motion of a Satellite about Its Center of Mass, R Dynamics, Institute of Computer Science, Izhevsk, 2009, 396 pp. (Russian) | MR
[34] Dokl. Akad. Nauk SSSR (N. S.), 98 (1954), 527–530 (Russian) | DOI | MR | MR | Zbl
[35] Uspekhi Mat. Nauk, 18:5 (1963), 13–40 (Russian) | DOI | MR | Zbl
[36] Uspekhi Mat. Nauk, 18:6 (1963), 91–192 (Russian) | DOI | MR | Zbl
[37] Arnol'd, V. I., Mathematical Methods of Classical Mechanics, Grad. Texts in Math., 60, 2nd ed., Springer, New York, 1997, 529 pp. | MR
[38] Funkts. Anal. Prilozh., 5:4 (1971), 82–83 (Russian) | DOI | MR | MR
[39] Uspekhi Mat. Nauk, 32:6(198) (1977), 5–66 | DOI | MR | Zbl | Zbl
[40] Tr. Semin. Petrovsk., 1979, no. 5, 5–50 (Russian) | MR | Zbl
[41] Moser, J., “New Aspects in the Theory of Stability of Hamiltonian Systems”, Comm. Pure Appl. Math., 11:1 (1958), 81–114 | DOI | MR | Zbl
[42] Moser, J., “Stabilitätsverhalten kanonischer Differentialgleichungssysteme”, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa, 1955 (1955), 87–120 | MR | Zbl
[43] Moser, J., “On the Elimination of the Irrationality Condition and Birkhoff's Concept of Complete Stability”, Bol. Soc. Mat. Mexicana (2), 5 (1960), 167–175 | MR | Zbl
[44] Moser, J., “Stability of the Asteroids”, Astron. J., 63:10 (1958), 439–443 | DOI
[45] Siegel C. L., Vorlesungen über Himmelsmechanik, Grundlehren Math. Wiss., 85, Springer, Berlin, 1956, 212 pp. | MR
[46] Glimm, J., “Formal Stability of Hamiltonian Systems”, Comm. Pure Appl. Math., 17:4 (1964), 509–526 | DOI | MR | Zbl
[47] Mat. Zametki, 1:3 (1967), 325–330 (Russian) | DOI | MR | Zbl
[48] Bruno, A. D., The Restricted $3$-Body Problem: Plane Periodic Orbits, de Gruyter Exp. Math., 17, Walter de Gruyter Co., Berlin, 1994, xiv+362 pp. | MR
[49] Gel'fond, A. O., Solving Equations in Integers, Dover, Mineola, N.Y., 2018, 80 pp.
[50] Kholostova, O. V., Problems of Dynamics of Solids with Vibrating Suspension, R Dynamics, Institute of Computer Science, Izhevsk, 2016, 308 pp. (Russian)