Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_3_a6, author = {V. V. Smirnov and L. I. Manevitch}, title = {Complex {Envelope} {Variable} {Approximation}}, journal = {Russian journal of nonlinear dynamics}, pages = {491--515}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_3_a6/} }
V. V. Smirnov; L. I. Manevitch. Complex Envelope Variable Approximation. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 3, pp. 491-515. http://geodesic.mathdoc.fr/item/ND_2020_16_3_a6/
[1] Nonlinear Science at the Dawn of the 21st Century, Lecture Notes in Phys., 542, eds. P. L. Christiansen, M. P. Sorensen, A. C. Scott, Springer, Berlin, 2000, xxvi+458 pp. | MR | Zbl
[2] Scott, A., Nonlinear Science: Emergence and Dynamics of Coherent Structures, Oxf. Texts Appl. Eng. Math., 8, 2nd ed., Oxford Univ. Press, Oxford, 2003, 504 pp. | MR | Zbl
[3] Sagdeev, R. Z., Usikov, D. A., and Zaslavsky, G. M., Nonlinear Physics: From the Pendulum to Turbulence and Chaos, Harwood Acad. Publ., Chur, 1990, 675 pp. | MR
[4] Bogoliubov, N. N. and Mitropolsky, Yu. A., Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon Breach, New York, 1961, x+537 pp. | MR
[5] Krylov, N. M. and Bogoliubov, N. N., Introduction to Non-Linear Mechanics, Ann. of Math. Stud., 11, Princeton Univ. Press, Princeton, N.J., 1943 | MR | Zbl
[6] Nayfeh, A. H. and Mook, D. T., Nonlinear Oscillations, Wiley, New York, 1979, 720 pp. | MR | Zbl
[7] Sanders, J. A., Verhulst, F., and Murdock, J., Averaging Methods in Nonlinear Dynamical Systems, Appl. Math. Sci., 59, 2nd ed., Springer, New York, 2007, xxii+431 pp. | MR | Zbl
[8] Mickens, R. E., Truly Nonlinear Oscillators: An Introduction to Harmonic Balance, Parameter Expansion, Iteration, and Averaging Methods, World Sci., Singapore, 2010, 262 pp. | MR
[9] Cveticanin, L., Strong Nonlinear Oscillators: Analytical Solutions, 2nd ed., Springer, Cham, 2018, 317 pp. | MR
[10] Esmailzadeh, E., Younesian, D., and Askari, H., Analytical Methods in Nonlinear Oscillations: Approaches and Applications, Solid Mech. Appl., 252, Springer, Dordrecht, 2019, XV, 286 pp. | MR | Zbl
[11] He, J.-H., “Some Asymptotic Methods for Strongly Nonlinear Equations”, Internat. J. Modern Phys. B, 20:10 (2006), 1141–1199 | DOI | MR | Zbl
[12] Leon, J. and Manna, M., “Multiscale Analysis of Discrete Nonlinear Evolution Equations”, J. Phys. A, 32:15 (1999), 2845–2869 | DOI | MR | Zbl
[13] Kevorkian, J. and Cole, J. D., “The Method of Multiple Scales for Ordinary Differential Equations”, Multiple Scale and Singular Perturbation Methods, Appl. Math. Sci., 114, Springer, New York, 1996, 267–409 | DOI | MR
[14] van der Pol, B., “On “Relaxation–Oscillations””, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (7), 2:11 (1926), 978–992 | DOI | Zbl
[15] van der Pol, B. and van der Mark, J., “Frequency Demultiplication”, Nature, 120 (1927), 363–364 | DOI
[16] Manevitch, L. I., “New Approach to Beating Phenomenon in Coupled Nonlinear Oscillatory Chains”, Arch. Appl. Mech., 77 (2007), 301–312 | DOI | Zbl
[17] Manevitch, L. I., “The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables”, Nonlinear Dynam., 25:1–3 (2001), 95–109 | DOI | MR | Zbl
[18] Kosevich, A. M. and Kovalev, A. S., Introduction to Nonlinear Physical Mechanics, Naukova Dumka, Kiev, 1989, 303 pp. (Russian) | MR | Zbl
[19] Dirac, P. A. M., The Principles of Quantum Mechanics, Internat. Ser. Monogr. Phys., 27, 4th ed., Oxford Univ. Press, New York, 1958, 314 pp. | MR
[20] Manevitch, L. I. and Smirnov, V. V., “Resonant Energy Exchange in Nonlinear Oscillatory Chains and Limiting Phase Trajectories: from Small to Large Systems”, Advanced Nonlinear Strategies for Vibration Mitigation and System Identification, CISM International Centre for Mechanical Sciences, 518, ed. A. F. Vakakis, Springer, Vienna, 2010, 207–258 | DOI | MR
[21] Manevitch, L. I. and Musienko, A. I., “Limiting Phase Trajectories and Energy Exchange between Anharmonic Oscillator and External Force”, Nonlinear Dyn., 58 (2009), 633–642 | DOI | Zbl
[22] Manevitch, L. I., Smirnov, V. V., and Romeo, F., “Non-Stationary Resonance Dynamics of the Harmonically Forced Pendulum”, Cybern. Phys., 5:3 (2016), 91–95
[23] Kovaleva, A. and Manevitch, L. I., “Limiting Phase Trajectories and Emergence of Autoresonance in Nonlinear Oscillators”, Phys. Rev. E, 88:2 (2013), 024901, 6 pp. | DOI
[24] Manevitch, L. I. and Smirnov, V. V., “Limiting Phase Trajectories and the Origin of Energy Localization in Nonlinear Oscillatory Chains”, Phys. Rev. E (3), 82:3 (2010), 036602, 9 pp. | DOI | MR
[25] Manevitch, L. I., Smirnov, V. V., and Romeo, F., “Stationary and Non-Stationary Resonance Dynamics of the Finite Chain of Weaky Coupled Pendula”, Cybern. Phys., 5:4 (2016), 130–135
[26] Smirnov, V. V. and Manevitch, L. I., “Large-Amplitude Nonlinear Normal Modes of the Discrete Sine Lattices”, Phys. Rev. E, 95:2 (2017), 022212, 8 pp. | DOI | MR
[27] Smirnov, V. V., Manevitch, L. I., Strozzi, M. and Pellicano, F., “Nonlinear Optical Vibrations of Single-Walled Carbon Nanotubes: 1. Energy Exchange and Localization of Low-Frequency Oscillations”, Phys. D, 325 (2016), 113–125 | DOI | MR | Zbl
[28] Smirnov, V. V. and Manevitch, L. I., “Semi-Inverse Method in Nonlinear Mechanics: Application to Couple Shell- and Beam-Type Oscillations of Single-Walled Carbon Nanotubes”, Nonlinear Dyn., 93 (2018), 205–218 | DOI
[29] Zh. Èksper. Teoret. Fiz., 144:2 (2013), 428–437 (Russian) | DOI
[30] Dokl. Akad. Nauk, 452:5 (2013), 514–517 | DOI | Zbl
[31] Bitar, D., Ture Savadkoohi, A., Lamarque, C.-H., Gourdon, E., and Collet, M., “Extended Complexification Method to Study Nonlinear Passive Control”, Nonlinear Dyn., 99 (2020), 1433–1450 | DOI
[32] Manevitch, L. I. and Vakakis, A. F., “Nonlinear Oscillatory Acoustic Vacuum”, SIAM J. Appl. Math., 74:6 (2014), 1742–1762 | DOI | MR | Zbl
[33] Smirnov, V. V., “Revolution of Pendula: Rotational Dynamics of the Coupled Pendula”, Problems of Nonlinear Mechanics and Physics of Materials, Advanced Structured Materials, 94, eds. I. V. Andrianov, A. I. Manevich, Yu. V. Mikhlin, O. V. Gendelman, Springer, Berlin, 2019, 141–156 | DOI | MR
[34] Smirnov, L. A., Kryukov, A. K., Osipov, G. V., and Kurths, J., “Bistability of Rotational Modes in a System of Coupled Pendulums”, Regul. Chaotic Dyn., 21:7–8 (2016), 849–861 | DOI | MR | Zbl
[35] Manevitch, L. I., Kovaleva, A., Smirnov, V., and Starosvetsky, Yu., Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures, Springer, Singapore, 2018, xxii+436 pp. | MR | Zbl
[36] Homma, S. and Takeno, S., “A Coupled Base-Rotator Model for Structure and Dynamics of DNA: Local Fluctuations in Helical Twist Angles and Topological Solitons”, Prog. Theor. Phys., 72:4 (1984), 679–693 | DOI | MR | Zbl
[37] Takeno, Sh. and Homma, Sh., “A sine-Lattice (sine-Form Discrete sine-Gordon) Equation: One- and Two-Kink Solutions and Physical Models”, J. Phys. Soc. Japan, 55:1 (1986), 65–75 | DOI | MR
[38] Gendelman, O. V. and Karmi, G., “Basic Mechanisms of Escape of a Harmonically Forced Classical Particle from a Potential Well”, Nonlinear Dyn., 98 (2019), 2775–2792 | DOI | Zbl
[39] He, J. H., “The Simplest Approach to Nonlinear Oscillators”, Results Phys., 15 (2019), 102546, 2 pp. | DOI
[40] Chowdhury, M., Hosen, M. A., Ahmad, K., Ali, M., and Ismail, A., “High-Order Approximate Solutions of Strongly Nonlinear Cubic-Quintic Duffing Oscillator Based on the Harmonic Balance Method”, Results Phys., 7 (2017), 3962–3967 | DOI | MR
[41] Gendelman, O., “Targeted Energy Transfer in Systems with Non-Polynomial Nonlinearity”, J. Sound Vibration, 315:3 (2008), 732–745 | DOI
[42] Gendelman, O. V. and Manevitch, L. I., “Method of Complex Amplitudes: Harmonically Excited Oscillator with Strong Cubic Nonlinearity”, ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering, v. 5, 19th Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C, DETC2003/VIB-48586, 2355–2359
[43] Whitham, G. B., “Variational Methods and Applications to Water Waves”, Proc. Roy. Soc. London Ser. A, 299:1456 (1967), 153–172 | MR
[44] Whitham, G. B., “Dispersive Waves and Variational Principles”, Nonlinear Waves, eds. S. Leibovitch, A. R. Seebass, Cornell Univ. Press, Itaca/London, 1974, 151–180 | MR
[45] Smirnov, V. V. and Manevitch, L. I., “Dynamics of the System with Antiferromagnetic Arrangement: Classical Description”, Advanced Problems in Mechanics (St. Petersburg, 2020)