Modeling of Dynamic Systems with Interval
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 3, pp. 479-490.

Voir la notice de l'article provenant de la source Math-Net.Ru

In solving applied and research problems, there often arise situations where certain parameters are not exactly known, but there is information about their ranges. For such problems, it is necessary to obtain an interval estimate of the solution based on interval values of parameters. In practice, the dynamic systems where bifurcations and chaos occur are of interest. But the existing interval methods are not always able to cope with such problems. The main idea of the adaptive interpolation algorithm is to build an adaptive hierarchical grid based on a kdtree where each cell of adaptive hierarchical grid contains an interpolation grid. The adaptive grid should be built above the set formed by interval initial conditions and interval parameters. An adaptive rebuilding of the partition is performed for each time instant, depending on the solution. The result of the algorithm at each step is a piecewise polynomial function that interpolates the dependence of the problem solution on the parameter values with a given precision. Constant grid compaction will occur at the corresponding points if there are unstable states or dynamic chaos in the system; therefore, the minimum cell size is set. The appearance of such cells during the operation of the algorithm is a sign of the presence of unstable states or chaos in a dynamic system. The effectiveness of the proposed approach is demonstrated in representative examples.
Keywords: instability, dynamic chaos, kd-tree.
Mots-clés : interval ODE, bifurcations, adaptive interpolation algorithm
@article{ND_2020_16_3_a5,
     author = {A. Yu. Morozov and D. L. Reviznikov},
     title = {Modeling of {Dynamic} {Systems} with {Interval}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {479--490},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_3_a5/}
}
TY  - JOUR
AU  - A. Yu. Morozov
AU  - D. L. Reviznikov
TI  - Modeling of Dynamic Systems with Interval
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 479
EP  - 490
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_3_a5/
LA  - en
ID  - ND_2020_16_3_a5
ER  - 
%0 Journal Article
%A A. Yu. Morozov
%A D. L. Reviznikov
%T Modeling of Dynamic Systems with Interval
%J Russian journal of nonlinear dynamics
%D 2020
%P 479-490
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_3_a5/
%G en
%F ND_2020_16_3_a5
A. Yu. Morozov; D. L. Reviznikov. Modeling of Dynamic Systems with Interval. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 3, pp. 479-490. http://geodesic.mathdoc.fr/item/ND_2020_16_3_a5/

[1] Arnold, V. I., Afrajmovich, V. S., Il'yashenko, Yu. S., and Shil'nikov, L. P., “Bifurcation Theory and Catastrophe Theory”, Dynamical Systems 7, Encyclopaedia Math. Sci., 5, ed. V. I. Arnold, Springer, Berlin, 1999, viii+271 pp. | MR | Zbl

[2] Astakhov, V. V., Koblyansky, S. A., and Shabunin, A. V., Duffing Oscillator, Saratov. Gos. Univ., Saratov, 2007, 53 pp. (Russian)

[3] Chernousko, F. L., State Estimation for Dynamic Systems, CRC, Boca Raton, Fla., 1993, 320 pp.

[4] Dobronets, B. S., Interval Mathematics, Krasnoyarsk. Gos. Univ., Krasnoyarsk, 2004, 216 pp. (Russian)

[5] Eijgenraam, P., The Solution of Initial Value Problems Using Interval Arithmetic: Formulation and Analysis of an Algorithm, Mathematical Centre Tracts, 144, Stichting Mathematisch Centrum, Amsterdam, 1981, 185 pp. | MR

[6] Kubyshkin, E. P. and Moriakova, A. R., “Features of Bifurcations of Periodic Solutions of the Ikeda Equation”, Russian J. Nonlinear Dyn., 14:3 (2018), 301–324 | MR | Zbl

[7] Kronover, R. M., Fractals and Chaos in Dynamical Systems: Fundamentals of Theory, Postmarket, Moscow, 2000, 352 pp. (Russian)

[8] Lohner, R. J., “Enclosing the Solutions of Ordinary Initial- and Boundary-Value Problems”, Computerarithmetic. Scientific Computation and Programming Languages, eds. E. Kaucher, U. Kulisch, Ch. Ullrich, Teubner, Stuttgart, 1987, 255–286 | MR

[9] Uspekhi Fiz. Nauk, 177:9 (2007), 989–1015 (Russian) | DOI | DOI

[10] Maglevanny, I. I., Smolar, V. A., and Karyakina, T. I., “Weak Signals Amplification through Controlled Bifurcations in Quasi-Two-Dimensional Electron Gas”, Russian J. Nonlinear Dyn., 14:4 (2018), 453–472 | MR | Zbl

[11] Makino, K. and Berz, M., “Verified Computations Using Taylor Models and Their Applications”, Numerical Software Verification (NSV 2017), Lect. Notes Comput. Sci., 10381, eds. A. Abate, S. Boldo, Springer, Cham, 2017, 3–13 | DOI

[12] Makino, K. and Berz, M., “Rigorous Reachability Analysis and Domain Decomposition of Taylor Models”, Numerical Software Verification (NSV 2017), Lect. Notes Comput. Sci., 10381, eds. A. Abate, S. Boldo, Springer, Cham, 2017, 90–97 | DOI

[13] Moore, R. E., Interval Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1966, xi+145 pp. | MR | Zbl

[14] Differ. Uravn., 54:7 (2018), 963–974 (Russian) | DOI | MR | Zbl

[15] Morozov, A. Yu., Reviznikov, D. L., and Gidaspov, V. Yu., “Adaptive Interpolation Algorithm Based on a KD-Tree for the Problems of Chemical Kinetics with Interval Parameters”, Math. Models Comput. Simul., 11:4 (2019), 622–633 | DOI | MR

[16] Morozov, A. Yu. and Reviznikov, D. L., “Modelling of Dynamic Systems with Interval Parameters on Graphic Processors”, Programmnaya Ingeneria, 10:2 (2019), 69–76 | DOI

[17] Morozov, A. Yu. and Reviznikov, D. L., Methods of Computer Simulation of Dynamic Systems with Interval Parameters, MAI, Moscow, 2019, 160 pp. (Russian)

[18] Rogalev, A. N., “Guaranteed Methods of Solving of Ordinary Differential Equations on the Basis of Symbolical Formulas Transformation”, Vychislitel'nye Tekhnologii, 8:5 (2003), 102–116 (Russian) | Zbl

[19] Sauer, Th. and Xu, Y., “On Multivariate Lagrange Interpolation”, Math. Comp., 64:211 (1995), 1147–1170 | DOI | MR | Zbl

[20] Shary, S. P., Finite Dimensional Interval Analysis, XYZ, Novosibirsk, 2019, 635 pp. (Russian)