Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_3_a5, author = {A. Yu. Morozov and D. L. Reviznikov}, title = {Modeling of {Dynamic} {Systems} with {Interval}}, journal = {Russian journal of nonlinear dynamics}, pages = {479--490}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_3_a5/} }
A. Yu. Morozov; D. L. Reviznikov. Modeling of Dynamic Systems with Interval. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 3, pp. 479-490. http://geodesic.mathdoc.fr/item/ND_2020_16_3_a5/
[1] Arnold, V. I., Afrajmovich, V. S., Il'yashenko, Yu. S., and Shil'nikov, L. P., “Bifurcation Theory and Catastrophe Theory”, Dynamical Systems 7, Encyclopaedia Math. Sci., 5, ed. V. I. Arnold, Springer, Berlin, 1999, viii+271 pp. | MR | Zbl
[2] Astakhov, V. V., Koblyansky, S. A., and Shabunin, A. V., Duffing Oscillator, Saratov. Gos. Univ., Saratov, 2007, 53 pp. (Russian)
[3] Chernousko, F. L., State Estimation for Dynamic Systems, CRC, Boca Raton, Fla., 1993, 320 pp.
[4] Dobronets, B. S., Interval Mathematics, Krasnoyarsk. Gos. Univ., Krasnoyarsk, 2004, 216 pp. (Russian)
[5] Eijgenraam, P., The Solution of Initial Value Problems Using Interval Arithmetic: Formulation and Analysis of an Algorithm, Mathematical Centre Tracts, 144, Stichting Mathematisch Centrum, Amsterdam, 1981, 185 pp. | MR
[6] Kubyshkin, E. P. and Moriakova, A. R., “Features of Bifurcations of Periodic Solutions of the Ikeda Equation”, Russian J. Nonlinear Dyn., 14:3 (2018), 301–324 | MR | Zbl
[7] Kronover, R. M., Fractals and Chaos in Dynamical Systems: Fundamentals of Theory, Postmarket, Moscow, 2000, 352 pp. (Russian)
[8] Lohner, R. J., “Enclosing the Solutions of Ordinary Initial- and Boundary-Value Problems”, Computerarithmetic. Scientific Computation and Programming Languages, eds. E. Kaucher, U. Kulisch, Ch. Ullrich, Teubner, Stuttgart, 1987, 255–286 | MR
[9] Uspekhi Fiz. Nauk, 177:9 (2007), 989–1015 (Russian) | DOI | DOI
[10] Maglevanny, I. I., Smolar, V. A., and Karyakina, T. I., “Weak Signals Amplification through Controlled Bifurcations in Quasi-Two-Dimensional Electron Gas”, Russian J. Nonlinear Dyn., 14:4 (2018), 453–472 | MR | Zbl
[11] Makino, K. and Berz, M., “Verified Computations Using Taylor Models and Their Applications”, Numerical Software Verification (NSV 2017), Lect. Notes Comput. Sci., 10381, eds. A. Abate, S. Boldo, Springer, Cham, 2017, 3–13 | DOI
[12] Makino, K. and Berz, M., “Rigorous Reachability Analysis and Domain Decomposition of Taylor Models”, Numerical Software Verification (NSV 2017), Lect. Notes Comput. Sci., 10381, eds. A. Abate, S. Boldo, Springer, Cham, 2017, 90–97 | DOI
[13] Moore, R. E., Interval Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1966, xi+145 pp. | MR | Zbl
[14] Differ. Uravn., 54:7 (2018), 963–974 (Russian) | DOI | MR | Zbl
[15] Morozov, A. Yu., Reviznikov, D. L., and Gidaspov, V. Yu., “Adaptive Interpolation Algorithm Based on a KD-Tree for the Problems of Chemical Kinetics with Interval Parameters”, Math. Models Comput. Simul., 11:4 (2019), 622–633 | DOI | MR
[16] Morozov, A. Yu. and Reviznikov, D. L., “Modelling of Dynamic Systems with Interval Parameters on Graphic Processors”, Programmnaya Ingeneria, 10:2 (2019), 69–76 | DOI
[17] Morozov, A. Yu. and Reviznikov, D. L., Methods of Computer Simulation of Dynamic Systems with Interval Parameters, MAI, Moscow, 2019, 160 pp. (Russian)
[18] Rogalev, A. N., “Guaranteed Methods of Solving of Ordinary Differential Equations on the Basis of Symbolical Formulas Transformation”, Vychislitel'nye Tekhnologii, 8:5 (2003), 102–116 (Russian) | Zbl
[19] Sauer, Th. and Xu, Y., “On Multivariate Lagrange Interpolation”, Math. Comp., 64:211 (1995), 1147–1170 | DOI | MR | Zbl
[20] Shary, S. P., Finite Dimensional Interval Analysis, XYZ, Novosibirsk, 2019, 635 pp. (Russian)