Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_3_a4, author = {A. Bekir and M. S. M. Shehata and E. H. M. Zahran}, title = {Comparison {Between} the {Exact} {Solutions}}, journal = {Russian journal of nonlinear dynamics}, pages = {463--477}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_3_a4/} }
A. Bekir; M. S. M. Shehata; E. H. M. Zahran. Comparison Between the Exact Solutions. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 3, pp. 463-477. http://geodesic.mathdoc.fr/item/ND_2020_16_3_a4/
[1] Fuchssteiner, B. and Fokas, A. S., “Symplectic Structures, Their Bäcklund Transformations and Hereditary Symmetries”, Phys. D, 4:1 (1981/82), 47–66 | DOI | MR | Zbl
[2] Constantin, A. and Escher, J., “Wave Breaking for Nonlinear Nonlocal Shallow Water Equations”, Acta Math., 181:2 (1998), 229–243 | DOI | MR | Zbl
[3] Camassa, R. and Holm, D. D., “An Integrable Shallow Water Equation with Peaked Solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664 | DOI | MR | Zbl
[4] Camassa, R., Holm, D. D., and Hyman, J. M., “A New Integrable Shallow Water Equation”, Adv. Appl. Mech., 31 (1994), 1–33 | DOI | Zbl
[5] Parkes, E. J. and Vakhnenko, V. O., “Explicit Solutions of the Camassa – Holm Equation”, Chaos Solitons Fractals, 26:5 (2005), 1309–1316 | DOI | MR | Zbl
[6] Eckhordt, J., Kostenko, A., and Tesch, G., “The Camassa – Holm Equation and the String Density Problem”, Intenat. Math. Nachrichten, 2016, no. 233, 1–24
[7] Crisan, D. and Holm, D. D., “Wave Breaking for the Stochastic Camassa – Holm Equation”, Phys. D, 376/377 (2018), 138–143 | DOI | MR | Zbl
[8] Hone, A. N. W., Lundmark, H., and Szmigielski, J., “Explicit Multipeakon Solutions of Novikov's Cubically Nonlinear Integrable Camassa – Holm Type Equation”, Dyn. Partial Differ. Equ., 6:3 (2009), 253–289 | DOI | MR | Zbl
[9] Ni, L. and Zhou, Y., “Well-Posedness and Persistence Properties for the Novikov Equation”, J. Differential Equations, 250:7 (2011), 3002–3021 | DOI | MR | Zbl
[10] Wu, X. and Yin, Zh., “Global Weak Solutions for the Novikov Equation”, J. Phys. A, 44:5 (2011), 055202, 17 pp. | DOI | MR | Zbl
[11] Wu, X. and Yin, Zh., “A Note on the Cauchy Problem of the Novikov Equation”, Appl. Anal., 92:6 (2013), 1116–1137 | DOI | MR | Zbl
[12] Novikov, V., “Generalizations of the Camassa – Holm Equation”, J. Phys. A, 42:34 (2009), 342002, 14 pp. | DOI | MR | Zbl
[13] Wu, X. and Yin, Zh., “Global Weak Solutions for the Novikov Equation”, J. Phys. A, 44:5 (2011), 055202, 17 pp. | DOI | MR | Zbl
[14] Tiğlay, F., “The Periodic Cauchy Problem for Novikov's Equation”, Int. Math. Res. Not. IMRN, 2011, no. 20, 4633–4648
[15] Himonas, A. A. and Holliman, C., “The Cauchy Problem for the Novikov Equation”, Nonlinearity, 25:2 (2012), 449–479 | DOI | MR | Zbl
[16] Chen, Y., Yan, Zh., and Zhang, H., “New Explicit Solitary Wave Solutions for $(2+1)$-Dimensional Boussinesq Equation and $(3+1)$-Dimensional KP Equation”, Phys. Lett. A, 307:2–3 (2003), 107–113 | DOI | MR | Zbl
[17] Kudryashov, N. A., “The Painlevé Approach for Finding Solitary Wave Solutions of Nonlinear Non-Integrable Differential Equations”, Optik, 183 (2019), 642–649 | DOI | MR
[18] Wazwaz, A.-M., “The Variational Iteration Method for Analytic Treatment of Linear and Nonlinear ODEs”, Appl. Math. Comput., 212:1 (2009), 120–134 | MR | Zbl