Comparison Between the Exact Solutions
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 3, pp. 463-477.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we employ the Painlevé approach to realize the solitary wave solution to three distinct important equations for the shallow water derived from the generalized Camassa – Holm equation with periodic boundary conditions. The first one is the Camassa – Holm equation, which is the main source for the shallow water waves without hydrostatic pressure that describes the unidirectional propagation of waves at the free surface of shallow water under the influence of gravity. While the second, the Novikov equation as a new integrable equation, possesses a bi-Hamiltonian structure and an infinite sequence of conserved quantities. Finally, the third equation is the (3 + 1)-dimensional Kadomtsev – Petviashvili (KP) equation. All the ansatz methods with their modifications, whether they satisfy the balance rule or not, fail to construct the exact and solitary solutions to the first two models. Furthermore, the numerical solutions to these three equations have been constructed using the variational iteration method.
Keywords: Novikov – Veselov equation, (3 + 1)-dimensional Kadomtsev – Petviashvili (KP) equation, traveling wave solutions, numerical solutions.
Mots-clés : Camassa – Holm equation, Painlevé approach
@article{ND_2020_16_3_a4,
     author = {A. Bekir and M. S. M. Shehata and E. H. M. Zahran},
     title = {Comparison {Between} the {Exact} {Solutions}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {463--477},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_3_a4/}
}
TY  - JOUR
AU  - A. Bekir
AU  - M. S. M. Shehata
AU  - E. H. M. Zahran
TI  - Comparison Between the Exact Solutions
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 463
EP  - 477
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_3_a4/
LA  - en
ID  - ND_2020_16_3_a4
ER  - 
%0 Journal Article
%A A. Bekir
%A M. S. M. Shehata
%A E. H. M. Zahran
%T Comparison Between the Exact Solutions
%J Russian journal of nonlinear dynamics
%D 2020
%P 463-477
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_3_a4/
%G en
%F ND_2020_16_3_a4
A. Bekir; M. S. M. Shehata; E. H. M. Zahran. Comparison Between the Exact Solutions. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 3, pp. 463-477. http://geodesic.mathdoc.fr/item/ND_2020_16_3_a4/

[1] Fuchssteiner, B. and Fokas, A. S., “Symplectic Structures, Their Bäcklund Transformations and Hereditary Symmetries”, Phys. D, 4:1 (1981/82), 47–66 | DOI | MR | Zbl

[2] Constantin, A. and Escher, J., “Wave Breaking for Nonlinear Nonlocal Shallow Water Equations”, Acta Math., 181:2 (1998), 229–243 | DOI | MR | Zbl

[3] Camassa, R. and Holm, D. D., “An Integrable Shallow Water Equation with Peaked Solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664 | DOI | MR | Zbl

[4] Camassa, R., Holm, D. D., and Hyman, J. M., “A New Integrable Shallow Water Equation”, Adv. Appl. Mech., 31 (1994), 1–33 | DOI | Zbl

[5] Parkes, E. J. and Vakhnenko, V. O., “Explicit Solutions of the Camassa – Holm Equation”, Chaos Solitons Fractals, 26:5 (2005), 1309–1316 | DOI | MR | Zbl

[6] Eckhordt, J., Kostenko, A., and Tesch, G., “The Camassa – Holm Equation and the String Density Problem”, Intenat. Math. Nachrichten, 2016, no. 233, 1–24

[7] Crisan, D. and Holm, D. D., “Wave Breaking for the Stochastic Camassa – Holm Equation”, Phys. D, 376/377 (2018), 138–143 | DOI | MR | Zbl

[8] Hone, A. N. W., Lundmark, H., and Szmigielski, J., “Explicit Multipeakon Solutions of Novikov's Cubically Nonlinear Integrable Camassa – Holm Type Equation”, Dyn. Partial Differ. Equ., 6:3 (2009), 253–289 | DOI | MR | Zbl

[9] Ni, L. and Zhou, Y., “Well-Posedness and Persistence Properties for the Novikov Equation”, J. Differential Equations, 250:7 (2011), 3002–3021 | DOI | MR | Zbl

[10] Wu, X. and Yin, Zh., “Global Weak Solutions for the Novikov Equation”, J. Phys. A, 44:5 (2011), 055202, 17 pp. | DOI | MR | Zbl

[11] Wu, X. and Yin, Zh., “A Note on the Cauchy Problem of the Novikov Equation”, Appl. Anal., 92:6 (2013), 1116–1137 | DOI | MR | Zbl

[12] Novikov, V., “Generalizations of the Camassa – Holm Equation”, J. Phys. A, 42:34 (2009), 342002, 14 pp. | DOI | MR | Zbl

[13] Wu, X. and Yin, Zh., “Global Weak Solutions for the Novikov Equation”, J. Phys. A, 44:5 (2011), 055202, 17 pp. | DOI | MR | Zbl

[14] Tiğlay, F., “The Periodic Cauchy Problem for Novikov's Equation”, Int. Math. Res. Not. IMRN, 2011, no. 20, 4633–4648

[15] Himonas, A. A. and Holliman, C., “The Cauchy Problem for the Novikov Equation”, Nonlinearity, 25:2 (2012), 449–479 | DOI | MR | Zbl

[16] Chen, Y., Yan, Zh., and Zhang, H., “New Explicit Solitary Wave Solutions for $(2+1)$-Dimensional Boussinesq Equation and $(3+1)$-Dimensional KP Equation”, Phys. Lett. A, 307:2–3 (2003), 107–113 | DOI | MR | Zbl

[17] Kudryashov, N. A., “The Painlevé Approach for Finding Solitary Wave Solutions of Nonlinear Non-Integrable Differential Equations”, Optik, 183 (2019), 642–649 | DOI | MR

[18] Wazwaz, A.-M., “The Variational Iteration Method for Analytic Treatment of Linear and Nonlinear ODEs”, Appl. Math. Comput., 212:1 (2009), 120–134 | MR | Zbl