Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_3_a3, author = {A. V. Borisov and E. A. Mikishanina}, title = {Dynamics of the {Chaplygin} {Ball} with {Variable} {Parameters}}, journal = {Russian journal of nonlinear dynamics}, pages = {453--462}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_3_a3/} }
A. V. Borisov; E. A. Mikishanina. Dynamics of the Chaplygin Ball with Variable Parameters. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 3, pp. 453-462. http://geodesic.mathdoc.fr/item/ND_2020_16_3_a3/
[1] Math. Sb., 24:1 (1903), 139–168 (Russian) | DOI | MR | Zbl
[2] Moskvin, A. Yu., “Chaplygin's Ball with a Gyrostat: Singular Solutions”, Nelin. Dinam., 5:3 (2009), 345–356 (Russian) | DOI
[3] Bolotin, S. V., “The Problem of Optimal Control of a Chaplygin Ball by Internal Rotors”, Regul. Chaotic Dyn., 17:6 (2012), 559–570 | DOI | MR | Zbl
[4] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Dynamics of the Chaplygin Ball on a Rotating Plane”, Russ. J. Math. Phys., 25:4 (2018), 423–433 | DOI | MR | Zbl
[5] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “How to Control Chaplygin's Sphere Using Rotors: 2”, Regul. Chaotic Dyn., 18:1–2 (2013), 144–158 | DOI | MR | Zbl
[6] Prikl. Mat. Mekh., 47:6 (1983), 916–921 (Russian) | DOI | MR | Zbl
[7] Mamaev, I. S. and Vetchanin, E. V., “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236 | DOI | MR | Zbl
[8] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Different Models of Rolling for a Robot Ball on a Plane As a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582 | DOI | MR | Zbl
[9] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “The Problem of Drift and Recurrence for the Rolling Chaplygin Ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR | Zbl
[10] Karavaev, Yu. L. and Kilin, A. A., “The Dynamics of a Spherical Robot of Combined Type by Periodic Control Actions”, Russian J. Nonlinear Dyn., 15:4 (2019), 497–504 | MR | Zbl
[11] Putkaradze, V. and Rogers, S., “On the Optimal Control of a Rolling Ball Robot Actuated by Internal Point Masses”, J. Dyn. Sys. Meas. Control, 142:5 (2020), 051002, 22 pp. | DOI | MR
[12] Bai, Y., Svinin, M., and Yamamoto, M., “Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot”, Regul. Chaotic Dyn., 23:4 (2018), 372–388 | DOI | MR | Zbl
[13] Kilin, A. A., Pivovarova, E. N., and Ivanova, T. B., “Spherical Robot of Combined Type: Dynamics and Control”, Regul. Chaotic Dyn., 20:6 (2015), 716–728 | DOI | MR | Zbl
[14] Borisov, A. V., “On the Liouville Problem”, Numerical Modelling in the Problems of Mechanics, Mosk. Gos. Univ., Moscow, 1991, 110–118 (Russian) | MR
[15] Vetchanin, E. V. and Mikishanina, E. A., “Vibrational Stability of Periodic Solutions of the Liouville Equations”, Russian J. Nonlinear Dyn., 15:3 (2019), 351–363 | MR | Zbl
[16] Dokl. Akad. Nauk, 485:3 (2019), 285–289 (Russian) | DOI
[17] Kozlov, V. V., “The Euler – Jacobi – Lie Integrability Theorem”, Nelin. Dinam., 9:2 (2013), 229–245 (Russian) | DOI | MR
[18] Markeev, A. P., “Integrability of the Problem of Rolling of a Sphere with a Multiply Connected Cavity Filled with an Ideal Fluid”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 21:1 (1986), 64–65 (Russian)
[19] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics, De Gruyter Stud. Math. Phys., 52, De Gruyter, Berlin, 2018, vii+526 pp. | MR
[20] Feigenbaum, M. J., “Quantitative Universality for a Class of Nonlinear Transformations”, J. Statist. Phys., 19:1 (1978), 25–52 | DOI | MR | Zbl