Dynamics of the Chaplygin Ball with Variable Parameters
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 3, pp. 453-462.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the study of the dynamics of the Chaplygin ball with variable moments of inertia, which occur due to the motion of pairs of internal material points, and internal rotors. The components of the inertia tensor and the gyrostatic momentum are periodic functions. In general, the problem is nonintegrable. In a special case, the relationship of the problem under consideration with the Liouville problem with changing parameters is shown. The case of the Chaplygin ball moving from rest is considered separately. Poincaré maps are constructed, strange attractors are found, and the stages of the origin of strange attractors are shown. Also, the trajectories of contact points are constructed to confirm the chaotic dynamics of the ball. A chart of dynamical regimes is constructed in a separate case for analyzing the nature of strange attractors.
Keywords: Chaplygin ball, strange attractor, chart of dynamical regimes.
Mots-clés : Poincaré map
@article{ND_2020_16_3_a3,
     author = {A. V. Borisov and E. A. Mikishanina},
     title = {Dynamics of the {Chaplygin} {Ball} with {Variable} {Parameters}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {453--462},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_3_a3/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - E. A. Mikishanina
TI  - Dynamics of the Chaplygin Ball with Variable Parameters
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 453
EP  - 462
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_3_a3/
LA  - en
ID  - ND_2020_16_3_a3
ER  - 
%0 Journal Article
%A A. V. Borisov
%A E. A. Mikishanina
%T Dynamics of the Chaplygin Ball with Variable Parameters
%J Russian journal of nonlinear dynamics
%D 2020
%P 453-462
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_3_a3/
%G en
%F ND_2020_16_3_a3
A. V. Borisov; E. A. Mikishanina. Dynamics of the Chaplygin Ball with Variable Parameters. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 3, pp. 453-462. http://geodesic.mathdoc.fr/item/ND_2020_16_3_a3/

[1] Math. Sb., 24:1 (1903), 139–168 (Russian) | DOI | MR | Zbl

[2] Moskvin, A. Yu., “Chaplygin's Ball with a Gyrostat: Singular Solutions”, Nelin. Dinam., 5:3 (2009), 345–356 (Russian) | DOI

[3] Bolotin, S. V., “The Problem of Optimal Control of a Chaplygin Ball by Internal Rotors”, Regul. Chaotic Dyn., 17:6 (2012), 559–570 | DOI | MR | Zbl

[4] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Dynamics of the Chaplygin Ball on a Rotating Plane”, Russ. J. Math. Phys., 25:4 (2018), 423–433 | DOI | MR | Zbl

[5] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “How to Control Chaplygin's Sphere Using Rotors: 2”, Regul. Chaotic Dyn., 18:1–2 (2013), 144–158 | DOI | MR | Zbl

[6] Prikl. Mat. Mekh., 47:6 (1983), 916–921 (Russian) | DOI | MR | Zbl

[7] Mamaev, I. S. and Vetchanin, E. V., “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236 | DOI | MR | Zbl

[8] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Different Models of Rolling for a Robot Ball on a Plane As a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582 | DOI | MR | Zbl

[9] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “The Problem of Drift and Recurrence for the Rolling Chaplygin Ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR | Zbl

[10] Karavaev, Yu. L. and Kilin, A. A., “The Dynamics of a Spherical Robot of Combined Type by Periodic Control Actions”, Russian J. Nonlinear Dyn., 15:4 (2019), 497–504 | MR | Zbl

[11] Putkaradze, V. and Rogers, S., “On the Optimal Control of a Rolling Ball Robot Actuated by Internal Point Masses”, J. Dyn. Sys. Meas. Control, 142:5 (2020), 051002, 22 pp. | DOI | MR

[12] Bai, Y., Svinin, M., and Yamamoto, M., “Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot”, Regul. Chaotic Dyn., 23:4 (2018), 372–388 | DOI | MR | Zbl

[13] Kilin, A. A., Pivovarova, E. N., and Ivanova, T. B., “Spherical Robot of Combined Type: Dynamics and Control”, Regul. Chaotic Dyn., 20:6 (2015), 716–728 | DOI | MR | Zbl

[14] Borisov, A. V., “On the Liouville Problem”, Numerical Modelling in the Problems of Mechanics, Mosk. Gos. Univ., Moscow, 1991, 110–118 (Russian) | MR

[15] Vetchanin, E. V. and Mikishanina, E. A., “Vibrational Stability of Periodic Solutions of the Liouville Equations”, Russian J. Nonlinear Dyn., 15:3 (2019), 351–363 | MR | Zbl

[16] Dokl. Akad. Nauk, 485:3 (2019), 285–289 (Russian) | DOI

[17] Kozlov, V. V., “The Euler – Jacobi – Lie Integrability Theorem”, Nelin. Dinam., 9:2 (2013), 229–245 (Russian) | DOI | MR

[18] Markeev, A. P., “Integrability of the Problem of Rolling of a Sphere with a Multiply Connected Cavity Filled with an Ideal Fluid”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 21:1 (1986), 64–65 (Russian)

[19] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics, De Gruyter Stud. Math. Phys., 52, De Gruyter, Berlin, 2018, vii+526 pp. | MR

[20] Feigenbaum, M. J., “Quantitative Universality for a Class of Nonlinear Transformations”, J. Statist. Phys., 19:1 (1978), 25–52 | DOI | MR | Zbl