Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_2_a9, author = {A. D. Morozov and K. E. Morozov}, title = {On {Quasi-Periodic} {Parametric} {Perturbations} of {Hamiltonian} {Systems}}, journal = {Russian journal of nonlinear dynamics}, pages = {369--378}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_2_a9/} }
TY - JOUR AU - A. D. Morozov AU - K. E. Morozov TI - On Quasi-Periodic Parametric Perturbations of Hamiltonian Systems JO - Russian journal of nonlinear dynamics PY - 2020 SP - 369 EP - 378 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_2_a9/ LA - en ID - ND_2020_16_2_a9 ER -
A. D. Morozov; K. E. Morozov. On Quasi-Periodic Parametric Perturbations of Hamiltonian Systems. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 369-378. http://geodesic.mathdoc.fr/item/ND_2020_16_2_a9/
[1] Shtokalo, J., “A Stability and Instability Criteria for Solutions of Linear Differential Equations with Quasi-Periodical Coefficients”, Mat. Sb. (N. S.), 19(61):2 (1946), 263–286 (Russian) | MR | Zbl
[2] Differ. Uravn., 53:12 (2017), 1607–1615 (Russian) | MR | Zbl
[3] Morozov, A. D. and Morozov, K. E., “Global Dynamics of Systems Close to Hamiltonian Ones under Nonconservative Quasi-Periodic Perturbation”, Russian J. Nonlinear Dyn., 15:2 (2019), 187–198 | MR | Zbl
[4] Morozov, A. D. and Morozov, K. E., “On Synchronization of Quasiperiodic Oscillations”, Russian J. Nonlinear Dyn., 14:3 (2018), 367–376 | MR | Zbl
[5] Morozov, A. D., “On the Structure of Resonance Zones and Chaos in Nonlinear Parametric Systems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4:2 (1994), 401–410 | MR | Zbl
[6] Morozov, A. D., Quasi-Conservative Systems: Cycles, Resonances and Chaos, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 30, World Sci., Singapoure, 1998, 340 pp. | MR | Zbl
[7] Morozov, A. D., Resonances, Cycles and Chaos in Quasi-Conservative Systems, R Dynamics, Izhevsk, 2005, 420 pp. (Russian) | MR
[8] Berger, M. S. and Chen, Y. Y., “Forced Quasiperiodic and Almost Periodic Oscillations of Nonlinear Duffing Equations”, Nonlinear Anal., 19:3 (1992), 249–257 | MR | Zbl
[9] Jing, Zh., Huang, J., and Deng, J., “Complex Dynamics in Three-Well Duffing System with Two External Forcings”, Chaos Solitons Fractals, 33:3 (2007), 795–812 | MR | Zbl
[10] Liu, B. and You, J., “Quasiperiodic Solutions of Duffing's Equations”, Nonlinear Anal., 33:6 (1998), 645–655 | MR | Zbl
[11] Jing, Zh., Yang, Zh., and Jiang, T., “Complex Dynamics in Duffing – van der Pol Equation”, Chaos Solitons Fractals, 27:3 (2006), 722–747 | MR | Zbl
[12] Wiggins, S., Chaotic Transport in Dynamical Systems, Interdiscip. Appl. Math., 2, Springer, New York, 1992, xiv+301 pp. | MR | Zbl
[13] Zh. Tekh. Fiz., 67:10 (1997), 1–7 (Russian)
[14] Yagasaki, K., “Second-Order Averaging and Chaos in Quasiperiodically Forced Weakly Nonlinear Oscillators”, Phys. D, 44:3 (1990), 445–458 | MR | Zbl
[15] Belogortsev, A. B., “Quasiperiodic Resonance and Bifurcations of Tori in the Weakly Nonlinear Duffing Oscillator”, Phys. D, 59:4 (1992), 417–429 | MR | Zbl
[16] Jing, Zh. and Wang, R., “Complex Dynamics in Duffing System with Two External Forcings”, Chaos Solitons Fractals, 23:2 (2005), 399–411 | MR | Zbl
[17] Spears, B. K., Hutchings, M., and Szeri, A. J., “Topological Bifurcations of Attracting $2$-Tori of Quasiperiodically Driven Oscillators”, J. Nonlinear Sci., 15:6 (2005), 423–452 | MR | Zbl
[18] Rajasekar, Sh. and Sanjuan, M. A. F., Nonlinear Resonances, Springer, Cham, 2016, xvii+409 pp. | MR
[19] Anishenko, V. S. and Nikolaev, S. M., “Experimental Research of Synchronization of Two-Frequency Quasiperiodic Motions”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 15:6 (2007), 93–101 (Russian)
[20] Bautin, N. N. and Leontovich, E. A., Methods and Techniques of the Qualitative Study of Dynamical Systems on the Plane, Nauka, Moscow, 1990, 448 pp. (Russian) | MR
[21] Prikl. Mat. Mekh., 47:3 (1983), 385–394 (Russian) | MR
[22] Bogolubov, N. N. and Mitropolskiy, Yu. A., Asymptotic Methods in the Theory of Nonlinear Oscillations, Nauka, Moscow, 1974, 503 pp. (Russian) | MR
[23] Morozov, A. D. and Dragunov, T. N., Visualization and Analysis of Invariant Sets for Dynamical Systems, R Dynamics, Institute of Computer Science, Izhevsk, 2003, 304 pp. (Russian) | MR