On Quasi-Periodic Parametric Perturbations of Hamiltonian Systems
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 369-378.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study nonconservative quasi-periodic $m$-frequency $\it parametric$ perturbations of twodimensional nonlinear Hamiltonian systems. Our objective is to specify the conditions for the existence of new regimes in resonance zones, which may arise due to parametric terms in the perturbation. These regimes correspond to $(m+1)$-frequency quasi-periodic solutions, which are not generated from Kolmogorov tori of the unperturbed system. The conditions for the existence of these solutions are found. The study is based on averaging theory and the analysis of the corresponding averaged systems. We illustrate the results with an example of a Duffing type equation.
Keywords: resonances, quasi-periodic, parametric, averaging method, phase curves, equilibrium states.
Mots-clés : limit cycles, invariant torus
@article{ND_2020_16_2_a9,
     author = {A. D. Morozov and K. E. Morozov},
     title = {On {Quasi-Periodic} {Parametric} {Perturbations} of {Hamiltonian} {Systems}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {369--378},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_2_a9/}
}
TY  - JOUR
AU  - A. D. Morozov
AU  - K. E. Morozov
TI  - On Quasi-Periodic Parametric Perturbations of Hamiltonian Systems
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 369
EP  - 378
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_2_a9/
LA  - en
ID  - ND_2020_16_2_a9
ER  - 
%0 Journal Article
%A A. D. Morozov
%A K. E. Morozov
%T On Quasi-Periodic Parametric Perturbations of Hamiltonian Systems
%J Russian journal of nonlinear dynamics
%D 2020
%P 369-378
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_2_a9/
%G en
%F ND_2020_16_2_a9
A. D. Morozov; K. E. Morozov. On Quasi-Periodic Parametric Perturbations of Hamiltonian Systems. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 369-378. http://geodesic.mathdoc.fr/item/ND_2020_16_2_a9/

[1] Shtokalo, J., “A Stability and Instability Criteria for Solutions of Linear Differential Equations with Quasi-Periodical Coefficients”, Mat. Sb. (N. S.), 19(61):2 (1946), 263–286 (Russian) | MR | Zbl

[2] Differ. Uravn., 53:12 (2017), 1607–1615 (Russian) | MR | Zbl

[3] Morozov, A. D. and Morozov, K. E., “Global Dynamics of Systems Close to Hamiltonian Ones under Nonconservative Quasi-Periodic Perturbation”, Russian J. Nonlinear Dyn., 15:2 (2019), 187–198 | MR | Zbl

[4] Morozov, A. D. and Morozov, K. E., “On Synchronization of Quasiperiodic Oscillations”, Russian J. Nonlinear Dyn., 14:3 (2018), 367–376 | MR | Zbl

[5] Morozov, A. D., “On the Structure of Resonance Zones and Chaos in Nonlinear Parametric Systems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4:2 (1994), 401–410 | MR | Zbl

[6] Morozov, A. D., Quasi-Conservative Systems: Cycles, Resonances and Chaos, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 30, World Sci., Singapoure, 1998, 340 pp. | MR | Zbl

[7] Morozov, A. D., Resonances, Cycles and Chaos in Quasi-Conservative Systems, R Dynamics, Izhevsk, 2005, 420 pp. (Russian) | MR

[8] Berger, M. S. and Chen, Y. Y., “Forced Quasiperiodic and Almost Periodic Oscillations of Nonlinear Duffing Equations”, Nonlinear Anal., 19:3 (1992), 249–257 | MR | Zbl

[9] Jing, Zh., Huang, J., and Deng, J., “Complex Dynamics in Three-Well Duffing System with Two External Forcings”, Chaos Solitons Fractals, 33:3 (2007), 795–812 | MR | Zbl

[10] Liu, B. and You, J., “Quasiperiodic Solutions of Duffing's Equations”, Nonlinear Anal., 33:6 (1998), 645–655 | MR | Zbl

[11] Jing, Zh., Yang, Zh., and Jiang, T., “Complex Dynamics in Duffing – van der Pol Equation”, Chaos Solitons Fractals, 27:3 (2006), 722–747 | MR | Zbl

[12] Wiggins, S., Chaotic Transport in Dynamical Systems, Interdiscip. Appl. Math., 2, Springer, New York, 1992, xiv+301 pp. | MR | Zbl

[13] Zh. Tekh. Fiz., 67:10 (1997), 1–7 (Russian)

[14] Yagasaki, K., “Second-Order Averaging and Chaos in Quasiperiodically Forced Weakly Nonlinear Oscillators”, Phys. D, 44:3 (1990), 445–458 | MR | Zbl

[15] Belogortsev, A. B., “Quasiperiodic Resonance and Bifurcations of Tori in the Weakly Nonlinear Duffing Oscillator”, Phys. D, 59:4 (1992), 417–429 | MR | Zbl

[16] Jing, Zh. and Wang, R., “Complex Dynamics in Duffing System with Two External Forcings”, Chaos Solitons Fractals, 23:2 (2005), 399–411 | MR | Zbl

[17] Spears, B. K., Hutchings, M., and Szeri, A. J., “Topological Bifurcations of Attracting $2$-Tori of Quasiperiodically Driven Oscillators”, J. Nonlinear Sci., 15:6 (2005), 423–452 | MR | Zbl

[18] Rajasekar, Sh. and Sanjuan, M. A. F., Nonlinear Resonances, Springer, Cham, 2016, xvii+409 pp. | MR

[19] Anishenko, V. S. and Nikolaev, S. M., “Experimental Research of Synchronization of Two-Frequency Quasiperiodic Motions”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 15:6 (2007), 93–101 (Russian)

[20] Bautin, N. N. and Leontovich, E. A., Methods and Techniques of the Qualitative Study of Dynamical Systems on the Plane, Nauka, Moscow, 1990, 448 pp. (Russian) | MR

[21] Prikl. Mat. Mekh., 47:3 (1983), 385–394 (Russian) | MR

[22] Bogolubov, N. N. and Mitropolskiy, Yu. A., Asymptotic Methods in the Theory of Nonlinear Oscillations, Nauka, Moscow, 1974, 503 pp. (Russian) | MR

[23] Morozov, A. D. and Dragunov, T. N., Visualization and Analysis of Invariant Sets for Dynamical Systems, R Dynamics, Institute of Computer Science, Izhevsk, 2003, 304 pp. (Russian) | MR