Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_2_a8, author = {Yu. Sachkov}, title = {Optimal {Bang-Bang} {Trajectories} in {Sub-Finsler} {Problems} on the {Engel} {Group}}, journal = {Russian journal of nonlinear dynamics}, pages = {355--367}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_2_a8/} }
Yu. Sachkov. Optimal Bang-Bang Trajectories in Sub-Finsler Problems on the Engel Group. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 355-367. http://geodesic.mathdoc.fr/item/ND_2020_16_2_a8/
[1] Pansu, P., “Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math. (2), 129:1 (1989), 1–60 | MR | Zbl
[2] Sibirsk. Mat. Zh., 30:2 (1989), 14–28, 225 (Russian) | MR
[3] Boscain, U., Chambrion, Th., and Charlot, G., “Nonisotropic $3$-Level Quantum Systems: Complete Solutions for Minimum Time and Minimum Energy”, Discrete Contin. Dyn. Syst. Ser. B, 5:4 (2005), 957–990 | MR | Zbl
[4] Barilari, D., Boscain, U., Le Donne, E., and Sigalotti, M., “Sub-Finsler Structures from the Time-Optimal Control Viewpoint for Some Nilpotent Distributions”, J. Dyn. Control Syst., 23:3 (2017), 547–575 | MR | Zbl
[5] Mat. Sb., 210:8 (2019), 120–148 (Russian) | MR
[6] Ardentov, A. A., Lokutsievskiy, L. V., and Sachkov, Yu. L., Explicit Solutions for a Series of Classical Optimization Problems with $2$-Dimensional Control via Convex Trigonometry, 2020, arXiv: 2004.10194 [math.OC]
[7] Busemann, H., “The Isoperimetric Problem in the Minkowski Plane”, Amer. J. Math., 69:4 (1947), 863–871 | MR | Zbl
[8] Sibirsk. Mat. Zh., 35:1 (1994), 3–11 (Russian) | MR | MR
[9] Dokl. Akad. Nauk, 485:4 (2019), 395–398 (Russian) | MR | MR | Zbl
[10] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004, xiv+412 pp. | MR | Zbl
[11] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F., The Mathematical Theory of Optimal Processes, Wiley, New York, 1962, viii+360 pp. | MR | Zbl
[12] Agrachev, A. A. and Gamkrelidze, R. V., “Symplectic Geometry for Optimal Control”, Nonlinear Controllability and Optimal Control, Monogr. Textbooks Pure Appl. Math., 133, ed. H. J. Sussmann, Dekker, New York, 1990, 263–277 | MR | Zbl
[13] Gantmacher, F. R., The Theory of Matrices: In 2 Vols., Chelsea, New York, 1959, x+374, ix+276 pp. | MR