Remarks on Forced Oscillations in Some Systems with Gyroscopic Forces
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 343-353.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the existence of forced oscillations in two Lagrange systems with gyroscopic forces: a spherical pendulum in a magnetic field and a point on a rotating closed convex surface. We show how it is possible to prove the existence of forced oscillations in these systems provided the systems move in the presence of viscous friction.
Keywords: forced oscillation, spherical pendulum, gyroscopic force, Wazewski method.
Mots-clés : friction
@article{ND_2020_16_2_a7,
     author = {I. Yu. Polekhin},
     title = {Remarks on {Forced} {Oscillations} in {Some} {Systems} with {Gyroscopic} {Forces}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {343--353},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_2_a7/}
}
TY  - JOUR
AU  - I. Yu. Polekhin
TI  - Remarks on Forced Oscillations in Some Systems with Gyroscopic Forces
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 343
EP  - 353
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_2_a7/
LA  - en
ID  - ND_2020_16_2_a7
ER  - 
%0 Journal Article
%A I. Yu. Polekhin
%T Remarks on Forced Oscillations in Some Systems with Gyroscopic Forces
%J Russian journal of nonlinear dynamics
%D 2020
%P 343-353
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_2_a7/
%G en
%F ND_2020_16_2_a7
I. Yu. Polekhin. Remarks on Forced Oscillations in Some Systems with Gyroscopic Forces. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 343-353. http://geodesic.mathdoc.fr/item/ND_2020_16_2_a7/

[1] Izv. Ross. Akad. Nauk Ser. Mat., 79:5 (2015), 39–46 (Russian) | MR | Zbl

[2] Ważewski, T., “Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires”, Ann. Soc. Polon. Math., 20 (1947), 279–313 | MR

[3] Reissig, R., Sansone, G., and Conti, R., Qualitative Theorie nichtlinearer Differentialgleichungen, Cremonese, Rome, 1963, xxxii+381 pp. | MR

[4] Srzednicki, R., “Periodic and Bounded Solutions in Blocks for Time-Periodic Nonautonomous Ordinary Differential Equations”, Nonlinear Anal. Theory Methods Appl., 22:6 (1994), 707–737 | MR | Zbl

[5] Srzednicki, R., Wójcik, K., and Zgliczyński, P., “Fixed Point Results Based on the Ważewski Method”, Handbook of Topological Fixed Point Theory, eds. R. F. Brown, M. Furi, L. Górniewicz, B. Jiang, Springer, Dordrecht, 2005, 905–943 | MR

[6] Polekhin, I. Yu., “Examples of Topological Approach to the Problem of Inverted Pendulum with Moving Pivot Point”, Nelin. Dinam., 10:4 (2014), 465–472 | MR | Zbl

[7] Polekhin, I., Periodic and Falling-Free Motion of an Inverted Spherical Pendulum with Moving Pivot Point, 2014, arXiv: 1411.1585 [math.DS] | Zbl

[8] Polekhin, I., “Forced Oscillations of a Massive Point on a Compact Surface with a Boundary”, Nonlinear Anal. Theory Methods Appl., 128 (2015), 100–105 | MR | Zbl

[9] Polekhin, I., “On Forced Oscillations in Groups of Interacting Nonlinear Systems”, Nonlinear Anal. Theory Methods Appl., 135 (2016), 120–128 | MR | Zbl

[10] Polekhin, I., “On Topological Obstructions to Global Stabilization of an Inverted Pendulum”, Syst. Control Lett., 113 (2018), 31–35 | MR | Zbl

[11] Srzednicki, R., “On Periodic Solutions in the Whitney's Inverted Pendulum Problem”, Discrete Contin. Dyn. Syst. Ser. S, 12:7 (2019), 2127–2141 | MR | Zbl

[12] Abbondandolo, A., Macarini, L., Mazzucchelli, M., and Paternain, G. P., “Infinitely Many Periodic Orbits of Exact Magnetic Flows on Surfaces for Almost Every Subcritical Energy Level”, J. Eur. Math. Soc., 19:2 (2017), 551–579 | MR | Zbl

[13] Izv. Akad. Nauk SSSR Ser. Mat., 55:2 (1991), 367–383 (Russian) | MR

[14] Uspekhi Mat. Nauk, 47:2(284) (1992), 143–185, 223 (Russian) | MR

[15] Uspekhi Mat. Nauk, 40:2(242) (1985), 33–60, 237 (Russian) | MR | Zbl | Zbl

[16] Bangert, V. and Long, Y., “The Existence of Two Closed Geodesics on Every Finsler $2$-Sphere”, Math. Ann., 346:2 (2010), 335–366 | MR | Zbl

[17] Ginzburg, V. L., “On Closed Trajectories of a Charge in a Magnetic Field: An Application of Symplectic Geometry”, Contact and Symplectic Geometry: Papers from the Special Programme Held at the University of Cambridge (Cambridge, July – December 1994), Publ. Newton Inst., 8, ed. C. B. Thomas, Cambridge Univ. Press, Cambridge, 1996, 131–148 | MR | Zbl

[18] Ginzburg, V. L. and Kerman, E., “Periodic Orbits in Magnetic Fields in Dimensions Greater Than Two”, Geometry and Topology in Dynamics: AMS Special Session on Topology in Dynamics Held in Winston-Salem, N.C. (Oct 1998) and AMS-AWM Special Session on Geometry in Dynamics Held in San Antonio, Tex. (Jan 1999), Contemp. Math., 246, eds. M. Barge, K. Kuperberg, AMS, Providence, R.I., 1999, 113–121 | MR | Zbl

[19] Schneider, M., Closed Magnetic Geodesics on $S^2$, 2010, arXiv: 0808.4038 [math.DG] | MR

[20] Funktsional. Anal. i Prilozhen., 15:4 (1981), 37–52, 96 (Russian) | MR

[21] Funktsional. Anal. i Prilozhen., 15:3 (1981), 54–66 (Russian) | MR

[22] Uspekhi Mat. Nauk, 37:5(227) (1982), 3–49 | MR | Zbl

[23] Furi, M. and Pera, M. P., “The Forced Spherical Pendulum Does Have Forced Oscillations”, Delay Differential Equations and Dynamical Systems (Claremont,Ċalif., 1990), Lecture Notes in Math., 1475, Springer, Berlin, 1991, 176–182 | MR

[24] Benci, V., “Periodic Solutions of Lagrangian Systems on a Compact Manifold”, J. Differential Equations, 63:2 (1986), 135–161 | MR | Zbl