Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_2_a3, author = {L. I. Mogilevich and S. V. Ivanov and Yu. A. Blinkov}, title = {Modeling of {Nonlinear} {Waves} in {Two} {Coaxial} {Physically} {Nonlinear} {Shells} with a {Viscous} {Incompressible} {Fluid} {Between} {Them,} {Taking} into {Account} the {Inertia} of its {Motion}}, journal = {Russian journal of nonlinear dynamics}, pages = {275--290}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_2_a3/} }
TY - JOUR AU - L. I. Mogilevich AU - S. V. Ivanov AU - Yu. A. Blinkov TI - Modeling of Nonlinear Waves in Two Coaxial Physically Nonlinear Shells with a Viscous Incompressible Fluid Between Them, Taking into Account the Inertia of its Motion JO - Russian journal of nonlinear dynamics PY - 2020 SP - 275 EP - 290 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_2_a3/ LA - en ID - ND_2020_16_2_a3 ER -
%0 Journal Article %A L. I. Mogilevich %A S. V. Ivanov %A Yu. A. Blinkov %T Modeling of Nonlinear Waves in Two Coaxial Physically Nonlinear Shells with a Viscous Incompressible Fluid Between Them, Taking into Account the Inertia of its Motion %J Russian journal of nonlinear dynamics %D 2020 %P 275-290 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2020_16_2_a3/ %G en %F ND_2020_16_2_a3
L. I. Mogilevich; S. V. Ivanov; Yu. A. Blinkov. Modeling of Nonlinear Waves in Two Coaxial Physically Nonlinear Shells with a Viscous Incompressible Fluid Between Them, Taking into Account the Inertia of its Motion. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 275-290. http://geodesic.mathdoc.fr/item/ND_2020_16_2_a3/
[1] Vol'mir, A. S., Shells in Fluid and Gas Flow: Problem of Hydroelasticity, Nauka, Moscow, 1979, 320 pp. (Russian)
[2] Erofeev, V. I., Microstructured Solids: Mathematical Models and Wave Processes Analysis, Intelservice, Nizhnny Novgorod, 1996
[3] Loitsyanskiy, L. G., Mechanics of Liquids and Gases, 6th ed., Begell House, New York, 1995, 971 pp. | MR
[4] Samarskii, A. A. and Mikhailov, A. P., Principles of Mathematical Modelling: Ideas, Methods, Examples, Numerical Insights, 3, CRC, Boca Raton, Fla., 2002, 360 pp. | MR
[5] Samarskii, A. A., The Theory of Difference Schemes, CRC, Boca Raton, Fla., 2001, 786 pp. | MR
[6] Ilyushin, A. A., Continuum Mechanics, 3rd ed., MGU, Moscow, 1990, 310 pp. (Russian)
[7] Kauderer, H., Nichtlineare Mechanik, Springer, Berlin, 1958, 700 pp. | MR | Zbl
[8] Volmir, A. S., The Nonlinear Dynamics of Plates and Shells, Foreign Technology Division, Wright-Patterson AFB, Dayton, Ohio, 1974, 543 pp. | MR
[9] Zemlyanukhin, A. I. and Mogilevich, L. I., Nonlinear Waves in Cylindrical Shells: Solitons, Symmetry, Evolution, SSU, Saratov, 1999, 132 pp. (Russian)
[10] Zemlyanukhin, A. I., Andrianov, I. V., Bochkarev, A. V., and Mogilevich, L. I., “The Generalized Schamel Equation in Nonlinear Wave Dynamics of Cylindrical Shells”, Nonlinear Dyn., 98:1 (2019), 185–194 | MR | Zbl
[11] Akust. Zh., 48:6 (2002), 725–740 (Russian)
[12] Akust. Zh., 47:3 (2001), 359–363 (Russian)
[13] Alijani, F. and Amabili, M., “Non-Linear Vibrations of Shells: A Literature Review from 2003 to 2013”, Int. J. Non-Linear Mech., 58 (2014), 233–257 | MR
[14] Avramov, K. V., Mikhlin, Yu. V., and Kurilov, E., “Asymptotic Analysis of Nonlinear Dynamics of Simply Supported Cylindrical Shells”, Nonlinear Dynam., 47:4 (2007), 331–352 | MR | Zbl
[15] Lekomtsev, S. V., “Finite-Elemental Algorithms for Calculating the Natural Oscillations of Three-Dimensional Shells”, Comput. Contin. Mech., 5:2 (2012), 233–243
[16] Bochkarev, S. A. and Matveenko, V. P., “Stability of Coaxial Cylindrical Shells Containing Rotating Fluid Flow”, Comput. Contin. Mech., 6:1 (2013), 94–102
[17] Andrejchenko, K. P. and Mogilevich, L. I., “On the Dynamics of Interaction between a Compressible Layer of a Viscous Incompressible Fluid and Elastic Walls”, Izv. Akad. Nauk. Mekh. Tverd. Tela, 1982, no. 2, 162–172 (Russian)
[18] Mogilevich, L. and Ivanov, S., “The Study of Wave Propagation in a Shell with Soft Nonlinearity and with a Viscous Liquid Inside”, Rus. J. Nonlin. Dyn., 15:3 (2019), 233–250 | MR | Zbl
[19] Tenenev, V. A., Vetchanin, E. V., and Mamaev, I. S., “Dynamics of a Body with a Sharp Edge in a Viscous Fluid”, Rus. J. Nonlin. Dyn., 14:4 (2018), 473–494 | MR | Zbl
[20] Borisov, A. V., Mamaev, I. S., and Vetchanin, E. V., “Self-Propulsion of a Smooth Body in a Viscous Fluid under Periodic Oscillations of a Rotor and Circulation”, Regul. Chaotic Dyn., 23:7–8 (2018), 850–874 | MR | Zbl
[21] Kuzenov, V. V. and Ryzhkov, S. V., “Approximate Method for Calculating Convective Heat Flux on the Surface of Bodies of Simple Geometric Shapes”, J. Phys. Conf. Ser., 815 (2017), 012024, 8 pp.
[22] Ryzhkov, S. V. and Kuzenov, V. V., “Analysis of the Ideal Gas Flow over Body of Basic Geometrical Shape”, Int. J. Heat Mass Transf., 132 (2019), 587–592
[23] Arshinov, G. A. and Mogilevich, L. I., “Non-Linear Dispersion Waves in Viscous-Elastic Cylindrical Shells”, EUROMECH (Saratov, Russia, July 2002):, v. 439, Mathematical Modelling of the Dynamic Behaviour of Thin Elastic Structures, 24–27
[24] Ovcharov, A. A. and Brylev, I. S., “Mathematical Model of Deformation of Nonlinear Elastic Reinforced Conical Shells under Dynamic Loading”, Sovrem. Probl. Nauki i Obrazov., 2014, no. 3, 8 pp. (Russian)
[25] Fel'dshtejn, V. A., “Elastic Plastic Deformations of a Cylindrical Shell with a Longitudinal Impact”, Waves in Inelastic Media, Akad. Nauk MSSR, Kishinev, 1970, 199–204 (Russian)
[26] Zemlyanukhin, A. I., Bochkarev, A. V., and Mogilevich, L. I., “Solitary Longitudinal-Bending Waves in Cylindrical Shell Interacting with a Nonlinear Elastic Medium”, Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2018, no. 1(76), 47–60 (Russian) | MR
[27] Nariboli, G. A., “Nonlinear Longitudinal Waves in Elastic Rods”, J. Math. Phys. Sci., 4:1 (1970), 64–73 | Zbl
[28] Nariboli, G. A. and Sedov, A.,, J. Math. Anal. Appl., 32:3 (1970), 661–677 | MR | Zbl
[29] Gerdt, V. P., Blinkov, Yu. A., and Mozzhilkin, V. V., “Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations”, SIGMA Symmetry Integrability Geom. Methods Appl., 2 (2006), 051, 26 pp. | MR | Zbl
[30] Gerdt, V. P. and Blinkov, Yu. A., “Janet Trees in Computing of Toric Ideals”, Proc. of the 5th Internat. Workshop on Computer Algebra and Its Application to Physics (Dubna, Russia, May 2002), 71–82
[31] Gerdt, V. P. and Blinkov, Yu. A., “Involution and Difference Schemes for the Navier – Stokes Equations”, Computer Algebra in Scientific Computing (CASC 2009), Lecture Notes in Comput. Sci., 5743, eds. V. P. Gerdt, E. W. Mayr, E. V. Vorozhtsov, Springer, Berlin, 2009, 94–105 | MR | Zbl
[32] Blinkov, Yu. A. and Mozzhilkin, V. V., “Generation of Difference Schemes for the Burgers Equation by Constructing Gröbner Bases”, Program. Comput. Soft., 32:2 (2006), 114–117 | MR | Zbl
[33] Blinkova, A. Yu., Blinkov, Yu. A., and Mogilevich, L. I., “Non-Linear Waves in Coaxial Cylinder Shells Containing Viscous Liquid Inside with Consideration for Energy Dispersion”, Vychisl. Mekh. Sploshn. Sred, 6:3 (2013), 336–345
[34] Blinkov, Yu. A., Kovaleva, I. A., and Mogilevich, L. I., “Nonlinear Waves Dynamics Modeling in Coaxial Geometrically and Physically Nonlinear Shell Containing Viscous Incompressible Fluid in between”, Vestn. RUDN. Mat. Inf. Fiz., 2013, no. 3, 42–51 (Russian)