Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_2_a2, author = {A. A. Burov and V. I. Nikonov}, title = {Inertial {Characteristics} of {Higher} {Orders} and {Dynamics} in a {Proximity} of a {Small} {Celestial} {Body}}, journal = {Russian journal of nonlinear dynamics}, pages = {259--273}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_2_a2/} }
TY - JOUR AU - A. A. Burov AU - V. I. Nikonov TI - Inertial Characteristics of Higher Orders and Dynamics in a Proximity of a Small Celestial Body JO - Russian journal of nonlinear dynamics PY - 2020 SP - 259 EP - 273 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_2_a2/ LA - en ID - ND_2020_16_2_a2 ER -
%0 Journal Article %A A. A. Burov %A V. I. Nikonov %T Inertial Characteristics of Higher Orders and Dynamics in a Proximity of a Small Celestial Body %J Russian journal of nonlinear dynamics %D 2020 %P 259-273 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2020_16_2_a2/ %G en %F ND_2020_16_2_a2
A. A. Burov; V. I. Nikonov. Inertial Characteristics of Higher Orders and Dynamics in a Proximity of a Small Celestial Body. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 259-273. http://geodesic.mathdoc.fr/item/ND_2020_16_2_a2/
[1] Duboshin, G. N., Theory of Attraction, Fizmatlit, Moscow, 1961, 288 pp. (Russian)
[2] Brour, D. and Clemence, G., Methods of Celestial Mechanics, Acad. Press, New York, 1961, 610 pp. | MR
[3] Beletskii, V. V., Motion of an Artificial Satellite about Its Center of Mass, Israel Program for Scientific Translations, Jerusalem, 1966, x, 261 pp.
[4] Demin, V. G., Motion of an Artificial Satellite in an Eccentric Gravitation Field, NASA, Springfield, Va., 1970, 329 pp.
[5] Dubochin, G. N., Celestial Mechanics: Main Problems and Methods, 3rd ed., Nauka, Moscow, 1975, 800 pp. (Russian) | MR
[6] Doubochine, G. N., “Sur le développement de la fonction des forces dans le problème de deux corps finis”, Celestial Mech., 14:2 (1976), 239–281 | MR | Zbl
[7] Sludsky, $\Theta$., On Deviation of Plumb-Lines, Master's Thesis, Moscow University, 1863 (Russian)
[8] Werner, R. A., “The Gravitational Potential of a Homogeneous Polyhedron or Don't Cut Corners”, Celest. Mech. Dyn. Astron., 59:3 (1994), 253–278 | Zbl
[9] Werner, R. A. and Scheeres, D. J., “Exterior Gravitation of a Polyhedron Derived and Compared with Harmonic and Mascon Gravitation Representations of Asteroid $4769$ Castalia”, Celest. Mech. Dyn. Astron., 65:3 (1996), 313–344
[10] Hill, G. W., “Researches in the Lunar Theory”, Amer. J. Math., 1:1 (1878), 5–26 | MR
[11] Pines, S., “Uniform Representation of the Gravitational Potential and Its Derivatives”, AIAA J., 11:11 (1973), 1508–1511 | Zbl
[12] Schutz, B. E., “The Mutual Potential and Gravitational Torques of Two Bodies to Fourth Order”, Celestial Mech., 24:2 (1981), 173–181 | MR | Zbl
[13] Sincarsin, G. B. and Hughes, P. C., “Gravitational Orbit-Attitude Coupling for Very Large Spacecraft”, Celestial Mech., 31:2 (1983), 143–161 | Zbl
[14] Soler, T., “A New Matrix Development of the Potential and Attraction at Exterior Points As a Function of the Inertia Tensors”, Celestial Mech., 32:3 (1984), 257–296 | MR | Zbl
[15] Ashenberg, J., “Proposed Method for Modeling the Gravitational Interaction between Finite Bodies”, J. Guid. Control Dynam., 28:4 (2005), 768–774
[16] Ashenberg, J., “Mutual Gravitational Potential and Torque of Solid Bodies via Inertia Integrals”, Celest. Mech. Dyn. Astron., 99:2 (2007), 149–159 | MR | Zbl
[17] Fantino, E. and Casotto, S., “Methods of Harmonic Synthesis for Global Geopotential Models and Their First-, Second- and Third-Order Gradients”, J. Geodesy, 83:7 (2009), 595–619
[18] Hirabayashi, M. and Scheeres, D. J., “Recursive Computation of Mutual Potential between Two Polyhedra”, Celest. Mech. Dyn. Astron., 117:3 (2013), 245–262 | MR
[19] Wang, Y. and Xu, S., “Gravity Gradient Torque of Spacecraft Orbiting Asteroids”, Aircr. Eng. Aerosp. Tec., 85:1 (2013), 72–81 | MR
[20] Wang, Y. and Xu, S., “Equilibrium Attitude and Stability of a Spacecraft on a Stationary Orbit Around an Asteroid”, Acta Astronaut., 84 (2013), 99–108 | MR
[21] Hou, X., Scheeres, D. J., and Xin, X., “Mutual Potential between Two Rigid Bodies with Arbitrary Shapes and Mass Distributions”, Celest. Mech. Dyn. Astron., 127:3 (2017), 369–395 | MR | Zbl
[22] Saraswati, A. T., Cattin, R., Mazzotti, S., and Cadio, C., “New Analytical Solution and Associated Software for Computing Full-Tensor Gravitational Field due to Irregularly Shaped Bodies”, J. Geodesy, 93:12 (2019), 2481–2497
[23] Dobrovolskis, A. R., “Inertia of Any Polyhedron”, Icarus, 124:2 (1996), 698–704
[24] Mirtich, B., “Fast and Accurate Computation of Polyhedral Mass Properties”, J. Graph. Tools, 1:2 (1996), 31–50
[25] Werner, R. A., “Spherical Harmonic Coefficients for the Potential of a Constant-Density Polyhedron”, Comput. Geosci., 23:10 (1997), 1071–1077
[26] Uspekhi Mat. Nauk, 40:2(242) (1985), 33–60, 237 (Russian) | MR | Zbl | Zbl
[27] Kozlov, V. and Polekhin, I., “On the Covering of a Hill's Region by Solutions in the Restricted Three-Body Problem”, Celest. Mech. Dyn. Astron., 127:3 (2017), 331–341 (Russian) | MR | Zbl
[28] Kozlov, V. and Polekhin, I., “On the Covering of a Hill's Region by Solutions in Systems with Gyroscopic Forces”, Nonlinear Anal., 148 (2017), 138–146 | MR | Zbl
[29] Wang, X., Jiang, Y., and Gong, Sh., “Analysis of the Potential Field and Equilibrium Points of Irregular-Shaped Minor Celestial Bodies”, Astrophys. Space Sci., 353:1 (2014), 105–121
[30] Zhuravlev, S. G., “Stability of the Libration Points of a Rotating Triaxial Ellipsoid”, Celestial Mech., 6:3 (1972), 255–267 | Zbl
[31] Zhuravlev, S. G., “About the Stability of the Libration Points of a Rotating Triaxial Ellipsoid in a Degenerate Case”, Celestial Mech., 8:1 (1973), 75–84 | MR | Zbl
[32] Prikl. Mat. Mekh., 45:1 (1981), 26–33 (Russian) | MR | MR | Zbl
[33] Kosenko, I. I., “Libration Points in the Triaxial Gravitating Ellipsoid Problem: Geometry of the Stability Region”, Kosmicheskie Issledovaniya, 19:2 (1981), 200–209 (Russian)
[34] Prikl. Mat. Mekh., 49:1 (1985), 16–24 (Russian) | MR | Zbl
[35] Prikl. Mat. Mekh., 50:2 (1986), 194–199 (Russian) | MR | Zbl
[36] Prikl. Mat. Mekh., 51:1 (1987), 3–8 (Russian) | MR | Zbl
[37] Kosmicheskie Issledovaniya, 45:5 (2007), 435–442 (Russian)
[38] Kosmicheskie Issledovaniya, 46:1 (2008), 42–50 (Russian)
[39] Rodnikov, A. V., “Triangular Libration Points of the Generalized Restricted Circular Problem of Three Bodies for Conjugate Complex Masses of Attracting Centers”, Russian J. Nonlinear Dyn., 10:2 (2014), 213–222 | Zbl
[40] Sretensky, L. N., Theory of the Newton Potential, Gostekhizdat, Moscow, 1946, 318 pp. (Russian)
[41] Burov, A. A. and Nikonov, V. I., “Computation of Attraction Potential of Asteroid ($433$) Eros with Accuracy up to the Terms of the Fourth Order”, Dokl. Akad. Nauk. Fizika, Tekhn. Nauki, 492:1 (2020), 56–60 (Russian)
[42] Nikonov, V. I., Gravitational Fields of Small Celestial Bodies, Belyi Veter, Moscow, 2020, 68 pp. (Russian)
[43] Small Body Radar Shape Models v2.0., ed. Neese, C., NASA Planetary Data System, 2004