Estimation of the Accuracy of the Averaging Method for Systems with Multifrequency Perturbations
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 379-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider systems of ordinary differential equations whose right-hand sides contain timeperiodic functions with some frequencies. An averaged system is constructed by introduction of additional variables and by step-by-step averaging over these variables. An upper estimate of the deviation of the solution to the initial system from the solution to the averaged system is given. Examples are given of mechanical systems in which vibrations with several frequencies occur and for the analysis of which the statements obtained are applied.
Keywords: averaging method, multifrequency perturbations, vibration frequency.
@article{ND_2020_16_2_a10,
     author = {E. I. Kugushev and T. V. Popova},
     title = {Estimation of the {Accuracy} of the {Averaging} {Method} for {Systems} with {Multifrequency} {Perturbations}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {379--394},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_2_a10/}
}
TY  - JOUR
AU  - E. I. Kugushev
AU  - T. V. Popova
TI  - Estimation of the Accuracy of the Averaging Method for Systems with Multifrequency Perturbations
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 379
EP  - 394
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_2_a10/
LA  - en
ID  - ND_2020_16_2_a10
ER  - 
%0 Journal Article
%A E. I. Kugushev
%A T. V. Popova
%T Estimation of the Accuracy of the Averaging Method for Systems with Multifrequency Perturbations
%J Russian journal of nonlinear dynamics
%D 2020
%P 379-394
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_2_a10/
%G en
%F ND_2020_16_2_a10
E. I. Kugushev; T. V. Popova. Estimation of the Accuracy of the Averaging Method for Systems with Multifrequency Perturbations. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 379-394. http://geodesic.mathdoc.fr/item/ND_2020_16_2_a10/

[1] Prikl. Mat. Mekh., 81:5 (2009), 523–533 (Russian) | MR | Zbl

[2] Bogolubov, N. N. and Mitropolskiy, Yu. A., Asymptotic Methods in the Theory of Nonlinear Oscillations, Nauka, Moscow, 1974, 503 pp. (Russian) | MR

[3] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp. | MR | Zbl

[4] Grebenikov, E. A., Mitropolskiy, Yu. A., and Ryabov, Yu. A., Introduction to Resonance Analytical Dynamics, Yanus-K, Moscow, 1999, 302 pp. (Russian) | MR

[5] Zhuravlev, V. F. and Klimov, D. M., Applied Methods in Vibration Theory, Nauka, Moscow, 1988, 326 pp. (Russian) | MR

[6] Hapaev, M. M., Averaging in Stability Theory: A Study of Resonance Multi-Frequency Systems, Math. Appl., 79, Springer, Dordrecht, 1993, xiii, 279 pp. | MR

[7] Funktsional. Anal. i Prilozhen., 20:2 (1986), 1–7 (Russian) | MR | Zbl

[8] Krasil'nikov, P. S., Applied Methods of Investigation of Nonlinear Oscillations, R Dynamics, Institute of Computer Science, Izhevsk, 2015, 528 pp. (Russian)

[9] Arnol'd, V. I., Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren Math. Wiss., 250, 2nd ed., Springer, New York, 1988, xiv+351 pp. | MR

[10] Stephenson, A., “On a New Type of Dynamical Stability”, Mem. Proc. Manch. Lit. Phil. Soc., 52:8 (1908), 1–10

[11] Kapitza, P. L., “Pendulum with a Vibrating Suspension”, Usp. Fiz. Nauk, 44 (1951), 7–15 (Russian) ; Collected Papers of P. L. Kapitza, v. 2, ed. D. ter Haar, Pergamon, Oxford, 1965, 726–732,732a,732b,733–737

[12] Kapitza, P. L., “Dynamical Stability of a Pendulum When Its Point of Suspension Vibrates”, Zh. Èksp. Teor. Fiz., 21:5 (1951), 588–597 (Russian); Collected Papers of P. L. Kapitza, v. 2, ed. D. ter Haar, Pergamon, Oxford, 1965, 714–725

[13] Strizhak, T. G., Methods of Investigation in Dynamical Systems of Pendulum-Type, Nauka, Alma-Ata, 1981, 253 pp. (Russian) | MR

[14] Blekhman, I. I., Vibrational Mechanics, Nauka, Moscow, 1994, 400 pp. (Russian) | MR

[15] Kholostova, O. V., Problems of Dynamics of Solids with Vibrating Suspension, R Dynamics, Institute of Computer Science, Izhevsk, 2016, 308 pp. (Russian)

[16] Dokl. Akad. Nauk, 427:6 (2009), 771–775 (Russian) | MR | Zbl

[17] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2012, no. 4, 3–10 (Russian)

[18] Dokl. Akad. Nauk, 431:6 (2010), 762–765 (Russian) | MR | Zbl

[19] Zhuravlev, V. F., Petrov, A. G., and Shunderyuk, M. M., Selected Problems of Hamiltonian Mechanics, Lenand, Moscow, 2015, 304 pp. (Russian)

[20] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2018, no. 5, 112–123 (Russian) | MR

[21] Neishtadt, A. I. and Sheng, K., “Bifurcations of Phase Portraits of Pendulum with Vibrating Suspension Point”, Commun. Nonlinear Sci. Numer. Simul., 47 (2017), 71–80 | MR