Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_2_a10, author = {E. I. Kugushev and T. V. Popova}, title = {Estimation of the {Accuracy} of the {Averaging} {Method} for {Systems} with {Multifrequency} {Perturbations}}, journal = {Russian journal of nonlinear dynamics}, pages = {379--394}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_2_a10/} }
TY - JOUR AU - E. I. Kugushev AU - T. V. Popova TI - Estimation of the Accuracy of the Averaging Method for Systems with Multifrequency Perturbations JO - Russian journal of nonlinear dynamics PY - 2020 SP - 379 EP - 394 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_2_a10/ LA - en ID - ND_2020_16_2_a10 ER -
%0 Journal Article %A E. I. Kugushev %A T. V. Popova %T Estimation of the Accuracy of the Averaging Method for Systems with Multifrequency Perturbations %J Russian journal of nonlinear dynamics %D 2020 %P 379-394 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2020_16_2_a10/ %G en %F ND_2020_16_2_a10
E. I. Kugushev; T. V. Popova. Estimation of the Accuracy of the Averaging Method for Systems with Multifrequency Perturbations. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 2, pp. 379-394. http://geodesic.mathdoc.fr/item/ND_2020_16_2_a10/
[1] Prikl. Mat. Mekh., 81:5 (2009), 523–533 (Russian) | MR | Zbl
[2] Bogolubov, N. N. and Mitropolskiy, Yu. A., Asymptotic Methods in the Theory of Nonlinear Oscillations, Nauka, Moscow, 1974, 503 pp. (Russian) | MR
[3] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp. | MR | Zbl
[4] Grebenikov, E. A., Mitropolskiy, Yu. A., and Ryabov, Yu. A., Introduction to Resonance Analytical Dynamics, Yanus-K, Moscow, 1999, 302 pp. (Russian) | MR
[5] Zhuravlev, V. F. and Klimov, D. M., Applied Methods in Vibration Theory, Nauka, Moscow, 1988, 326 pp. (Russian) | MR
[6] Hapaev, M. M., Averaging in Stability Theory: A Study of Resonance Multi-Frequency Systems, Math. Appl., 79, Springer, Dordrecht, 1993, xiii, 279 pp. | MR
[7] Funktsional. Anal. i Prilozhen., 20:2 (1986), 1–7 (Russian) | MR | Zbl
[8] Krasil'nikov, P. S., Applied Methods of Investigation of Nonlinear Oscillations, R Dynamics, Institute of Computer Science, Izhevsk, 2015, 528 pp. (Russian)
[9] Arnol'd, V. I., Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren Math. Wiss., 250, 2nd ed., Springer, New York, 1988, xiv+351 pp. | MR
[10] Stephenson, A., “On a New Type of Dynamical Stability”, Mem. Proc. Manch. Lit. Phil. Soc., 52:8 (1908), 1–10
[11] Kapitza, P. L., “Pendulum with a Vibrating Suspension”, Usp. Fiz. Nauk, 44 (1951), 7–15 (Russian) ; Collected Papers of P. L. Kapitza, v. 2, ed. D. ter Haar, Pergamon, Oxford, 1965, 726–732,732a,732b,733–737
[12] Kapitza, P. L., “Dynamical Stability of a Pendulum When Its Point of Suspension Vibrates”, Zh. Èksp. Teor. Fiz., 21:5 (1951), 588–597 (Russian); Collected Papers of P. L. Kapitza, v. 2, ed. D. ter Haar, Pergamon, Oxford, 1965, 714–725
[13] Strizhak, T. G., Methods of Investigation in Dynamical Systems of Pendulum-Type, Nauka, Alma-Ata, 1981, 253 pp. (Russian) | MR
[14] Blekhman, I. I., Vibrational Mechanics, Nauka, Moscow, 1994, 400 pp. (Russian) | MR
[15] Kholostova, O. V., Problems of Dynamics of Solids with Vibrating Suspension, R Dynamics, Institute of Computer Science, Izhevsk, 2016, 308 pp. (Russian)
[16] Dokl. Akad. Nauk, 427:6 (2009), 771–775 (Russian) | MR | Zbl
[17] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2012, no. 4, 3–10 (Russian)
[18] Dokl. Akad. Nauk, 431:6 (2010), 762–765 (Russian) | MR | Zbl
[19] Zhuravlev, V. F., Petrov, A. G., and Shunderyuk, M. M., Selected Problems of Hamiltonian Mechanics, Lenand, Moscow, 2015, 304 pp. (Russian)
[20] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2018, no. 5, 112–123 (Russian) | MR
[21] Neishtadt, A. I. and Sheng, K., “Bifurcations of Phase Portraits of Pendulum with Vibrating Suspension Point”, Commun. Nonlinear Sci. Numer. Simul., 47 (2017), 71–80 | MR