Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_1_a5, author = {O. V. Kholostova}, title = {On the {Dynamics} of a {Rigid} {Body} in the {Hess} {Case} at {High-Frequency} {Vibrations} of a {Suspension} {Point}}, journal = {Russian journal of nonlinear dynamics}, pages = {59--84}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a5/} }
TY - JOUR AU - O. V. Kholostova TI - On the Dynamics of a Rigid Body in the Hess Case at High-Frequency Vibrations of a Suspension Point JO - Russian journal of nonlinear dynamics PY - 2020 SP - 59 EP - 84 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a5/ LA - en ID - ND_2020_16_1_a5 ER -
O. V. Kholostova. On the Dynamics of a Rigid Body in the Hess Case at High-Frequency Vibrations of a Suspension Point. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 59-84. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a5/
[1] Hess, W., “Über die Eulerschen Bewegungsgleichungen und eine neue particuläre Lösung des Problems der Bewegung eines starren schweren Körpers um einen festen Punkt”, Math. Ann., 37:2 (1890), 178–180 | DOI | MR
[2] Appel'rot, G. G., “Concerning Section 1 of the Memoir of S. V. Kovalevskaya «Sur le problème de la rotation d'un corps solide autour d'un point fixe», and the Appendix to This Paper”, Mat. Sb., 16:3 (1892), 483–507 (Russian)
[3] Zhukovsky, N. E., “Hess' Loxodromic Pendulum”, Collected Works, v. 1, Gostekhizdat, Moscow, 1937, 332–348 (Russian)
[4] Nekrassov, P. A., “Étude analytique d'un cas du mouvement d'un corps pesant autour d'un point fixe”, Mat. Sb., 18:2 (1896), 161–274 (Russian) | MR
[5] Golubev, V. V., Lectures on Integration of the Equations of Motion of a Rigid Body about a Fixed Point, Israel Program for Scientific Translations, Jerusalem, 1960, 229 pp. | MR | Zbl
[6] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian) | MR
[7] Sretenskii, L. N., “Some Integrability Cases for the Equations of Gyrostat Motion”, Dokl. Akad. Nauk SSSR, 149:2 (1963), 292–294 (Russian) | MR | Zbl
[8] Burov, A. A., “On a Partial Integral in the Problem of the Motion of a Heavy Rigid Body Suspended on a Rod”, Research Problems of Stability and Stabilisation of Motion, Computing Centre of the USSR Acad. Sci., Moscow, 1986, 93–95 (Russian) | MR
[9] Burov, A. A., “On Partial Integrals of the Equations of Motion of a Rigid Body on a Frictionless Horizontal Plane”, Research Problems of Stability and Stabilisation of Motion, eds. V. V. Rumyantsev, V. S. Sergeev, S. Ya. Stepanov, A. S. Sumbatov, Computing Centre of the USSR Acad. Sci., Moscow, 1985, 118–121 (Russian) | MR
[10] Chaplygin, S. A., “Some Cases of Motion of a Rigid Body in a Fluid: 1, 2”, Collected Works, v. 1, Gostekhizdat, Moscow, 1948, 136–311 (Russian) | MR
[11] Dokl. Akad. Nauk SSSR, 266:6 (1982), 1298–1300 (Russian) | MR | Zbl
[12] Prikl. Mat. Mekh., 48:5 (1984), 745–749 (Russian) | DOI | MR
[13] Prikl. Mat. Mekh., 67:2 (2003), 256–265 (Russian) | DOI | MR | Zbl
[14] Tr. Mat. Inst. Steklova, 294 (2016), 268–292 (Russian) | DOI | MR | Zbl
[15] Lubowiecki, P. and Żoła̧dek, H., “The Hess – Appelrot System: 1. Invariant Torus and Its Normal Hyperbolicity”, J. Geom. Mech., 4:4 (2012), 443–467 | DOI | MR | Zbl
[16] Lubowiecki, P. and Żoła̧dek, H., “The Hess – Appelrot System: 2. Perturbation and Limit Cycles”, J. Differential Equations, 252:2 (2012), 1701–1722 | DOI | MR | Zbl
[17] Kurek, R., Lubowiecki, P., and Żoła̧dek, H., “The Hess – Appelrot System: 3. Splitting of Separatrices and Chaos”, Discrete Contin. Dyn. Syst. A, 38:4 (2018), 1955–1981 | DOI | MR | Zbl
[18] Żoła̧dek, H., “Perturbations of the Hess – Appelrot and the Lagrange Cases in the Rigid Body Dynamics”, J. Geom. Phys., 142 (2019), 121–136 | DOI | MR
[19] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Hess – Appelrot Case and Quantization of the Rotation Number”, Regul. Chaotic Dyn., 22:2 (2017), 180–196 | DOI | MR | Zbl
[20] Dokl. Akad. Nauk, 427:6 (2009), 771–775 (Russian) | DOI | MR | Zbl
[21] Prikl. Mat. Mekh., 75:2 (2011), 193–203 (Russian) | DOI | MR | Zbl
[22] Kholostova, O. V., “On a Case of Periodic Motions of the Lagrangian Top with Vibrating Fixed Point”, Regul. Chaotic Dyn., 4:4 (1999), 81–93 | DOI | MR | Zbl
[23] Dokl. Ross. Akad. Nauk, 375:5 (2000), 627–630 (Russian) | DOI | MR
[24] Prikl. Mat. Mekh., 64:5 (2000), 858–868 (Russian) | DOI | MR | Zbl
[25] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2012, no. 4, 3–10 (Russian) | DOI
[26] Belichenko, M. V. and Kholostova, O. V., “On the Stability of Stationary Rotations in the Approximate Problem of Motion of Lagrange's Top with a Vibrating Suspension Point”, Nelin. Dinam., 13:1 (2017), 81–104 (Russian) | DOI | MR | Zbl
[27] Belichenko, M. V., “On the Stability of Pendulum-Type Motions in the Approximate Problem of Dynamics of a Lagrange Top with a Vibrating Suspension Point”, Russian J. Nonlinear Dyn., 14:2 (2018), 243–263 | MR | Zbl
[28] Gradshtein, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th ed., Acad. Press, Amsterdam, 2007, 1200 pp. | MR | Zbl
[29] Malkin, I. G., Theory of Stability of Motion, U.S. Atomic Energy Commission, Washington, D.C., 1952, 456 pp.
[30] Byrd, P. F. and Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Scientists, Grundlehren Math. Wiss., 67, 2nd ed., rev., Springer, Berlin, 1971, XVI, 360 pp. | MR | Zbl
[31] Karapetyan, A. V. and Rumyantsev, V. V., Stability of Conservative and Dissipative Systems, Itogi Nauki Tekh. Ser. Obshch. Mekh., 6, VINITI, Moscow, 1983, 132 pp. (Russian) | MR
[32] Karapetyan, A. V., The Stability of Steady Motions, Editorial URSS, Moscow, 1998, 168 pp. (Russian)
[33] Staude, O., “Über permanente Rotationsaxen bei der Bewegung eines schweren Körpers um einen festen Punkt”, J. Reine Angew. Math., 113:4 (1894), 318–334 | MR
[34] Kholostova O. V., Stability Investigation of Staude's Permanent Rotations, R Dynamics, Institute of Computer Science, Izhevsk, 2008 (Russian)