Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_1_a14, author = {A. P. Mashtakov and A. Yu. Popov}, title = {Asymptotics of {Extremal} {Controls} in the {Sub-Riemannian} {Problem} on the {Group} of {Motions} of {Euclidean} {Space}}, journal = {Russian journal of nonlinear dynamics}, pages = {195--208}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a14/} }
TY - JOUR AU - A. P. Mashtakov AU - A. Yu. Popov TI - Asymptotics of Extremal Controls in the Sub-Riemannian Problem on the Group of Motions of Euclidean Space JO - Russian journal of nonlinear dynamics PY - 2020 SP - 195 EP - 208 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a14/ LA - en ID - ND_2020_16_1_a14 ER -
%0 Journal Article %A A. P. Mashtakov %A A. Yu. Popov %T Asymptotics of Extremal Controls in the Sub-Riemannian Problem on the Group of Motions of Euclidean Space %J Russian journal of nonlinear dynamics %D 2020 %P 195-208 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a14/ %G en %F ND_2020_16_1_a14
A. P. Mashtakov; A. Yu. Popov. Asymptotics of Extremal Controls in the Sub-Riemannian Problem on the Group of Motions of Euclidean Space. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 195-208. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a14/
[1] Jamieson, J. and Holderbaum, W., “Trajectory Generation Using Sub-Riemannian Curves for Quadrotor UAVs”, Proc. of the European Control Conference (Linz, Austria, 2015), 1645–1650
[2] Biggs, J. and Holderbaum, W., “Optimal Kinematic Control of an Autonomous Underwater Vehicle”, IEEE Trans. Automat. Control, 54:7 (2009), 1623–1626 | DOI | MR | Zbl
[3] Duits, R., Dela Haije, T. C. J., Creusen, E. J., and Ghosh, A., “Morphological and Linear Scale Spaces for Fiber Enhancement in DW-MRI”, J. Math. Imaging Vision, 46:3 (2013), 326–368 | DOI | MR | Zbl
[4] Bizyaev, I. A., Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “Integrability and Nonintegrability of Sub-Riemannian Geodesic Flows on Carnot Groups”, Regul. Chaotic Dyn., 21:6 (2016), 759–774 | DOI | MR | Zbl
[5] Mat. Sb., 209:5 (2018), 74–119 (Russian) | DOI | DOI | MR
[6] Differ. Uravn., 51:11 (2015), 1482–1488 (Russian) | DOI | MR | Zbl
[7] Duits, R., Ghosh, A., Dela Haije, T. C. J., and Mashtakov, A., “On Sub-Riemannian Geodesics in $SE(3)$ Whose Spatial Projections Do Not Have Cusps”, J. Dyn. Control Syst., 22:4 (2016), 771–805 | DOI | MR | Zbl
[8] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian) | MR
[9] Kirchhoff, G., Vorlesungen über mathematische Physik: Vol. 1. Mechanik, Teubner, Leipzig, 1876, 466 pp.
[10] Uspekhi Mat. Nauk, 72:5(437) (2017), 3–62 (Russian) | DOI | DOI | MR | Zbl
[11] Halphen, G.-H., “Sur le mouvement d'un solide dans un liquide”, J. Math. Pures Appl. (4), 4 (1888), 5–82 | MR
[12] Mashtakov, A. P. and Popov, A. Yu., “Extremal Controls in the Sub-Riemannian Problem on the Group of Motions of Euclidean Space”, Regul. Chaotic Dyn., 22:8 (2017), 952–957 | DOI | MR
[13] Kolmogorov, A. N. and Fomin, S. V., Elements of the Theory of Functions and Functional Analysis, Dover, New York, 1999, 128 pp. | MR