Intrinsic Shape Property of Global Attractors in Metrizable Spaces
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 181-194
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper concerns the connection between shape theory and attractors for semidynamical systems in metric spaces. We show that intrinsic shape theory from [6] is a convenient framework to study the global properties which the attractor inherits from the phase space. Namely, following [6] we’ll improve some of the previous results about the shape of global attractors in arbitrary metrizable spaces by using the intrinsic approach to shape which combines continuity up to a covering and the corresponding homotopies of first order.
Keywords:
intrinsic shape, regular covering, continuity over a covering, attractor, proximate net.
@article{ND_2020_16_1_a13,
author = {N. Shekutkovski and M. Shoptrajanov},
title = {Intrinsic {Shape} {Property} of {Global} {Attractors} in {Metrizable} {Spaces}},
journal = {Russian journal of nonlinear dynamics},
pages = {181--194},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a13/}
}
TY - JOUR AU - N. Shekutkovski AU - M. Shoptrajanov TI - Intrinsic Shape Property of Global Attractors in Metrizable Spaces JO - Russian journal of nonlinear dynamics PY - 2020 SP - 181 EP - 194 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a13/ LA - en ID - ND_2020_16_1_a13 ER -
N. Shekutkovski; M. Shoptrajanov. Intrinsic Shape Property of Global Attractors in Metrizable Spaces. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 181-194. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a13/