Intrinsic Shape Property of Global Attractors in Metrizable Spaces
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 181-194

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper concerns the connection between shape theory and attractors for semidynamical systems in metric spaces. We show that intrinsic shape theory from [6] is a convenient framework to study the global properties which the attractor inherits from the phase space. Namely, following [6] we’ll improve some of the previous results about the shape of global attractors in arbitrary metrizable spaces by using the intrinsic approach to shape which combines continuity up to a covering and the corresponding homotopies of first order.
Keywords: intrinsic shape, regular covering, continuity over a covering, attractor, proximate net.
@article{ND_2020_16_1_a13,
     author = {N. Shekutkovski and M. Shoptrajanov},
     title = {Intrinsic {Shape} {Property} of {Global} {Attractors} in {Metrizable} {Spaces}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {181--194},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a13/}
}
TY  - JOUR
AU  - N. Shekutkovski
AU  - M. Shoptrajanov
TI  - Intrinsic Shape Property of Global Attractors in Metrizable Spaces
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 181
EP  - 194
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a13/
LA  - en
ID  - ND_2020_16_1_a13
ER  - 
%0 Journal Article
%A N. Shekutkovski
%A M. Shoptrajanov
%T Intrinsic Shape Property of Global Attractors in Metrizable Spaces
%J Russian journal of nonlinear dynamics
%D 2020
%P 181-194
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a13/
%G en
%F ND_2020_16_1_a13
N. Shekutkovski; M. Shoptrajanov. Intrinsic Shape Property of Global Attractors in Metrizable Spaces. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 181-194. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a13/