Intrinsic Shape Property of Global Attractors in Metrizable Spaces
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 181-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper concerns the connection between shape theory and attractors for semidynamical systems in metric spaces. We show that intrinsic shape theory from [6] is a convenient framework to study the global properties which the attractor inherits from the phase space. Namely, following [6] we’ll improve some of the previous results about the shape of global attractors in arbitrary metrizable spaces by using the intrinsic approach to shape which combines continuity up to a covering and the corresponding homotopies of first order.
Keywords: intrinsic shape, regular covering, continuity over a covering, attractor, proximate net.
@article{ND_2020_16_1_a13,
     author = {N. Shekutkovski and M. Shoptrajanov},
     title = {Intrinsic {Shape} {Property} of {Global} {Attractors} in {Metrizable} {Spaces}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {181--194},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a13/}
}
TY  - JOUR
AU  - N. Shekutkovski
AU  - M. Shoptrajanov
TI  - Intrinsic Shape Property of Global Attractors in Metrizable Spaces
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 181
EP  - 194
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a13/
LA  - en
ID  - ND_2020_16_1_a13
ER  - 
%0 Journal Article
%A N. Shekutkovski
%A M. Shoptrajanov
%T Intrinsic Shape Property of Global Attractors in Metrizable Spaces
%J Russian journal of nonlinear dynamics
%D 2020
%P 181-194
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a13/
%G en
%F ND_2020_16_1_a13
N. Shekutkovski; M. Shoptrajanov. Intrinsic Shape Property of Global Attractors in Metrizable Spaces. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 181-194. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a13/

[1] Borsuk, K., Theory of Shape, Monogr. Matem., 59, PWN, Warsaw, 1975, 379 pp. | MR | Zbl

[2] Dydak, J. and Segal, J., Shape Theory: An Introduction, Lecture Notes in Math., 688, Springer, Berlin, 1978, vi+150 pp. | DOI | MR | Zbl

[3] Spanier, E. H., Algebraic Topology, McGraw-Hill, New York, 1966, xiv+528 pp. | MR | Zbl

[4] Bhatia, N. P. and Szegö, G. P., Stability Theory of Dynamical Systems, Grundlehren Math. Wiss., 161, Springer, New York, 1970, xi+225 pp. | MR | Zbl

[5] Nemytskii, V. V. and Stepanov, V. V., Qualitative Theory of Differential Equations, Princeton Math. Ser., 22, Princeton Univ. Press, Princeton, N.J., 1960, viii+523 pp. | MR

[6] Shekutkovski, N., “Intrinsic Shape: The Proximate Approach”, Filomat, 29:10 (2015), 2199–2205 | DOI | MR | Zbl

[7] Hastings, H. M., “A Higher-Dimensional Poincaré – Bendixson Theorem”, Glasnik Mat. Ser. 3, 14(34):2 (1979), 263–268 | MR | Zbl

[8] Shoptrajanov, M. and Shekutkovski, N., “Characterization of Topologically Transitive Attractors for Analytic Plane Flows”, Filomat, 29:1 (2015), 89–97 | DOI | MR | Zbl

[9] Bogatyï, S. A. and Gutsu, V. I., “On the Structure of Attracting Compacta”, Differ. Uravn., 25:5 (1989), 907–909, 920 (Russian) | MR | Zbl

[10] Günther, B. and Segal, J., “Every Attractor of a Flow on a Manifold Has the Shape of a Finite Polyhedron”, Proc. Amer. Math. Soc., 119:1 (1993), 321–329 | DOI | MR | Zbl

[11] Giraldo, A. and Sanjurjo, J. M. R., “On the Global Structure of Invariant Regions of Flows with Asymptotically Stable Attractors”, Math. Z., 232:4 (1999), 739–746 | DOI | MR | Zbl

[12] Rogers, J. T., Jr., “The Shape of a Cross-Section of the Solution Funnel of an Ordinary Differential Equation”, Illinois J. Math., 21:2 (1977), 420–426 | DOI | MR | Zbl

[13] Mrozek, M., “Shape Index and Other Indices of Conley Type for Local Maps on Locally Compact Hausdorff Spaces”, Fund. Math., 145:1 (1994), 15–37 | MR | Zbl

[14] Robbin, J. W. and Salamon, D., “Dynamical Systems, Shape Theory and the Conley Index”, Ergodic Theory Dynam. Systems, 8$^*$:Charles Conley Memorial Issue (1988), 375–393 | DOI | MR | Zbl

[15] Shekutkovski, N., “Intrinsic Definition of Strong Shape for Compact Metric Spaces”, Topology Proc., 39 (2012), 27–39 | MR | Zbl

[16] Giraldo, A., Jiménez, R., Morón, M. A., Ruiz del Portal, F. R., and Sanjurjo, J. M. R., “Pointed Shape and Global Attractors for Metrizable Spaces”, Topology Appl., 158:2 (2011), 167–176 | DOI | MR | Zbl

[17] Kapitanski, L. and Rodnianski, I., “Shape and Morse Theory of Attractors”, Comm. Pure Appl. Math., 53:2 (2000), 218–242 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[18] Sánchez-Gabites, J. J., “Dynamical Systems and Shape”, Rev. R. Acad. Cien. Serie A. Mat., 102:1 (2008), 127–159 | DOI | MR | Zbl

[19] Felt, J. E., “$\varepsilon$-Continuity and Shape”, Proc. Amer. Math. Soc., 46:3 (1974), 426–430 | MR | Zbl

[20] Sanjurjo, J. M. R., “A Non-Continuous Description of the Shape Category of Compacta”, Q. J. Math., 40:3 (1989), 351–359 | DOI | MR | Zbl

[21] Shekutkovski, N., “One Property of Components of a Chain Recurrent Set”, Regul. Chaotic Dyn., 20:2 (2015), 184–188 | DOI | MR | Zbl

[22] Chepyzhov, V. V., Conti, M., and Pata, V., “A Minimal Approach to the Theory of Global Attractors”, Discrete Contin. Dyn. Syst., 32:6 (2012), 2079–2088 | DOI | MR | Zbl

[23] Shekutkovski, N. and Shoptrajanov, M., “Intrinsic Shape of the Chain Recurrent Set”, Topology Appl., 202 (2016), 117–126 | DOI | MR | Zbl

[24] Keesling, J., “Locally Compact Full Homeomorphism Group Are Zero-Dimensional”, Proc. Amer. Math. Soc., 29:2 (1971), 390–396 | MR | Zbl

[25] Jiménez López, V. and Llibre, J., “A Topological Characterization of the $\omega$-Limit Sets for Analytic Flows on the Plane, the Sphere and the Projective Plane”, Adv. Math., 216:2 (2007), 677–710 | DOI | MR | Zbl