Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_1_a11, author = {J. Hricko and \v{S}. Havl{\'\i}k and Yu. L. Karavaev}, title = {Verifying the {Performance} {Characteristics} of the (micro) {Robotic} {Devices}}, journal = {Russian journal of nonlinear dynamics}, pages = {161--172}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a11/} }
TY - JOUR AU - J. Hricko AU - Š. Havlík AU - Yu. L. Karavaev TI - Verifying the Performance Characteristics of the (micro) Robotic Devices JO - Russian journal of nonlinear dynamics PY - 2020 SP - 161 EP - 172 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a11/ LA - en ID - ND_2020_16_1_a11 ER -
%0 Journal Article %A J. Hricko %A Š. Havlík %A Yu. L. Karavaev %T Verifying the Performance Characteristics of the (micro) Robotic Devices %J Russian journal of nonlinear dynamics %D 2020 %P 161-172 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a11/ %G en %F ND_2020_16_1_a11
J. Hricko; Š. Havlík; Yu. L. Karavaev. Verifying the Performance Characteristics of the (micro) Robotic Devices. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 161-172. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a11/
[1] Howell, L. L., Magleby, S. P., and Olsen, B. M., Handbook of Compliant Mechanisms, Wiley, New York, 2013, 342 pp.
[2] Linß, S., Schorr, P., and Zentner, L., “General Design Equations for the Rotational Stiffness, Maximal Angular Deflection and Rotational Precision of Various Notch Flexure Hinges”, Mech. Sci., 8:1 (2017), 29–49 | DOI
[3] Zhang, Y., Pan, S., and Deng, J., “Methods for Measuring and Compensating Ball Screw Error on Multi-Mode Industrial CT Scanning Platform”, Proc. of the 5th Internat. Conf. on Measurement, Instrumentation and Automation (Shenzhen, China, 2016)
[4] Lobontiu, N., Compliant Mechanisms: Design of Flexure Hinges, CRC, Boca Raton, Fla., 2002, 424 pp.
[5] Havlík, Š., Hricko, J., Prada, E., and Jezný, J., “Linear Motion Mechanisms for Fine Position Adjustment of Heavy Weight Platforms”, Proc. of the 28th Internat. Conf. on Robotics in Alpe-Adria-Danube Region (RAAD, Kaiserslautern, Germany, 2019), Advances in Intelligent Systems and Computing, 980, eds. K. Berns, D. Görges, Springer, Cham, 2020, 19–25 | DOI
[6] Dong, W., Chen, F., Gao, F., Yang, M., Sun, L., Du, Zh., Tang, J., and Zhang, D., “Development and Analysis of a Bridge-Lever-Type Displacement Amplifier Based on Hybrid Flexure Hinges”, Precis. Eng., 54 (2018), 171–181 | DOI
[7] Hricko, J. and Havlík, Š., “Compliant Mechanisms for Motion/Force Amplifiers for Robotics”, Proc. of the 28th Internat. Conf. on Robotics in Alpe-Adria-Danube Region (RAAD, Kaiserslautern, Germany, 2019), Advances in Intelligent Systems and Computing, 980, eds. K. Berns, D. Görges, Springer, Cham, 2020, 26–33 | DOI
[8] Kota, S., Hetrick, J., Li, Z., and Saggere, L., “Tailoring Unconventional Actuators Using Compliant Transmissions: Design Methods and Applications”, IEEE/ASME Trans. Mechatronics, 4:4 (1999), 396–408 | DOI
[9] Chen, J., Zhang, C., Xu, M., Zi, Y., and Zhang, X., “Rhombic Micro-Displacement Amplifier for Piezo-Electric Actuator and Its Linear and Hybrid Model”, Mech. Syst. Signal Pr., 50–51 (2015), 580–593 | DOI
[10] Lobontiu, N. and Garcia, E., “Analytical Model of Displacement Amplification and Stiffness Optimization for a Class of Flexure-Based Compliant Mechanisms”, Comput. Struct., 81:32 (2003), 2797–2810 | DOI
[11] Ling, M., Cao, J., Zeng, M., Lin, J., and Inman, D. J., “Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms”, Smart Mater. Struct., 25:7 (2016), ID 075022 | DOI | Zbl
[12] Sciavicco, L. and Siciliano, B., Modeling and Control of Robot Manipulators, Adv. Textb. Control Signal Process., 2nd ed., Springer, London, 2001, 377 pp.
[13] Xu, Q. and Li, Y., “Stiffness Modeling for an Orthogonal $3$-PUU Compliant Parallel Micromanipulator”, Proc. of the IEEE Internat. Conf. on Mechatronics and Automation (Luoyang, Henan, China, 2006), 124–129
[14] Young, W. C., Roark's Formulas for Stress and Strain, 6th ed., McGraw Hill, New York, 1989, 736 pp. | MR
[15] Chen, G., Liu, X., and Du, Y., “Elliptical-Arc-Fillet Flexure Hinges: Toward a Generalized Model for Commonly Used Flexure Hinges”, ASME J. Mech. Des., 133:8 (2011), 081002, 9 pp. | DOI
[16] Hale, L. C., Principles and Techniques for Designing Precision Machines, PhD Dissertation, MIT, Cambridge, Mass., 1999, 486 pp.
[17] Hricko, J. and Havlík, Š., “Design of Compact Compliant Devices: Mathematical Models vs. Experiments”, Am. J. Mech. Eng., 3:6 (2015), 201–206
[18] Hoffmann, K., An Introduction to Measurements Using Strain Gauges, HBM, Darmstadt, 1989, 260 pp.
[19] Hart'anský, R., Smieško, V., and Rafaj, M., “Modifying and Accelerating the Method of Moments Calculation”, Computing and Informatics, 36:3 (2017), 664–682 | DOI | MR | Zbl
[20] Hart'anský, R. and Halgoš, J., “The Problem of RF Radiator with Force Detector”, Proc. of the 11th Internat. Conf. on Measurement (Smolenice, Slovakia, May 2017), Slovak Acad. of Sci., Bratislava, 2017, 139–142
[21] Hart'anský, R., “Analysis of Omni-Directivity Error of Electromagnetic Field Probe Using Isotropic Antenna”, Meas. Sci. Rev., 16:6 (2016), 287–293 | DOI
[22] Hart'anský, R., Slížik, J., and Maršálka, L., “Dipole near Field Analysis: A Closed Form Calculation in Cartesian Coordinates”, J. Electr. Eng., 64:5 (2013), 327–330