Verifying the Performance Characteristics of the (micro) Robotic Devices
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 161-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is focused to design, simulation and modeling of the compact compliant structures widely used in construction of robotic devices. As the illustrative example it is proposed mechanism for reduction of motion, which enables to improve the accuracy of the positioning system. The physical model is fabricated by 3D printing technology. Its proposed performance characteristics are verified by measurement on the experimental test bed by using laser distance sensors and image sensing/processing technology.
Keywords: compact compliant mechanisms, 3D printing, modeling and simulation, HIL simulations Received.
@article{ND_2020_16_1_a11,
     author = {J. Hricko and \v{S}. Havl{\'\i}k and Yu. L. Karavaev},
     title = {Verifying the {Performance} {Characteristics} of the (micro) {Robotic} {Devices}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {161--172},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a11/}
}
TY  - JOUR
AU  - J. Hricko
AU  - Š. Havlík
AU  - Yu. L. Karavaev
TI  - Verifying the Performance Characteristics of the (micro) Robotic Devices
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 161
EP  - 172
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a11/
LA  - en
ID  - ND_2020_16_1_a11
ER  - 
%0 Journal Article
%A J. Hricko
%A Š. Havlík
%A Yu. L. Karavaev
%T Verifying the Performance Characteristics of the (micro) Robotic Devices
%J Russian journal of nonlinear dynamics
%D 2020
%P 161-172
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a11/
%G en
%F ND_2020_16_1_a11
J. Hricko; Š. Havlík; Yu. L. Karavaev. Verifying the Performance Characteristics of the (micro) Robotic Devices. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 161-172. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a11/

[1] Howell, L. L., Magleby, S. P., and Olsen, B. M., Handbook of Compliant Mechanisms, Wiley, New York, 2013, 342 pp.

[2] Linß, S., Schorr, P., and Zentner, L., “General Design Equations for the Rotational Stiffness, Maximal Angular Deflection and Rotational Precision of Various Notch Flexure Hinges”, Mech. Sci., 8:1 (2017), 29–49 | DOI

[3] Zhang, Y., Pan, S., and Deng, J., “Methods for Measuring and Compensating Ball Screw Error on Multi-Mode Industrial CT Scanning Platform”, Proc. of the 5th Internat. Conf. on Measurement, Instrumentation and Automation (Shenzhen, China, 2016)

[4] Lobontiu, N., Compliant Mechanisms: Design of Flexure Hinges, CRC, Boca Raton, Fla., 2002, 424 pp.

[5] Havlík, Š., Hricko, J., Prada, E., and Jezný, J., “Linear Motion Mechanisms for Fine Position Adjustment of Heavy Weight Platforms”, Proc. of the 28th Internat. Conf. on Robotics in Alpe-Adria-Danube Region (RAAD, Kaiserslautern, Germany, 2019), Advances in Intelligent Systems and Computing, 980, eds. K. Berns, D. Görges, Springer, Cham, 2020, 19–25 | DOI

[6] Dong, W., Chen, F., Gao, F., Yang, M., Sun, L., Du, Zh., Tang, J., and Zhang, D., “Development and Analysis of a Bridge-Lever-Type Displacement Amplifier Based on Hybrid Flexure Hinges”, Precis. Eng., 54 (2018), 171–181 | DOI

[7] Hricko, J. and Havlík, Š., “Compliant Mechanisms for Motion/Force Amplifiers for Robotics”, Proc. of the 28th Internat. Conf. on Robotics in Alpe-Adria-Danube Region (RAAD, Kaiserslautern, Germany, 2019), Advances in Intelligent Systems and Computing, 980, eds. K. Berns, D. Görges, Springer, Cham, 2020, 26–33 | DOI

[8] Kota, S., Hetrick, J., Li, Z., and Saggere, L., “Tailoring Unconventional Actuators Using Compliant Transmissions: Design Methods and Applications”, IEEE/ASME Trans. Mechatronics, 4:4 (1999), 396–408 | DOI

[9] Chen, J., Zhang, C., Xu, M., Zi, Y., and Zhang, X., “Rhombic Micro-Displacement Amplifier for Piezo-Electric Actuator and Its Linear and Hybrid Model”, Mech. Syst. Signal Pr., 50–51 (2015), 580–593 | DOI

[10] Lobontiu, N. and Garcia, E., “Analytical Model of Displacement Amplification and Stiffness Optimization for a Class of Flexure-Based Compliant Mechanisms”, Comput. Struct., 81:32 (2003), 2797–2810 | DOI

[11] Ling, M., Cao, J., Zeng, M., Lin, J., and Inman, D. J., “Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms”, Smart Mater. Struct., 25:7 (2016), ID 075022 | DOI | Zbl

[12] Sciavicco, L. and Siciliano, B., Modeling and Control of Robot Manipulators, Adv. Textb. Control Signal Process., 2nd ed., Springer, London, 2001, 377 pp.

[13] Xu, Q. and Li, Y., “Stiffness Modeling for an Orthogonal $3$-PUU Compliant Parallel Micromanipulator”, Proc. of the IEEE Internat. Conf. on Mechatronics and Automation (Luoyang, Henan, China, 2006), 124–129

[14] Young, W. C., Roark's Formulas for Stress and Strain, 6th ed., McGraw Hill, New York, 1989, 736 pp. | MR

[15] Chen, G., Liu, X., and Du, Y., “Elliptical-Arc-Fillet Flexure Hinges: Toward a Generalized Model for Commonly Used Flexure Hinges”, ASME J. Mech. Des., 133:8 (2011), 081002, 9 pp. | DOI

[16] Hale, L. C., Principles and Techniques for Designing Precision Machines, PhD Dissertation, MIT, Cambridge, Mass., 1999, 486 pp.

[17] Hricko, J. and Havlík, Š., “Design of Compact Compliant Devices: Mathematical Models vs. Experiments”, Am. J. Mech. Eng., 3:6 (2015), 201–206

[18] Hoffmann, K., An Introduction to Measurements Using Strain Gauges, HBM, Darmstadt, 1989, 260 pp.

[19] Hart'anský, R., Smieško, V., and Rafaj, M., “Modifying and Accelerating the Method of Moments Calculation”, Computing and Informatics, 36:3 (2017), 664–682 | DOI | MR | Zbl

[20] Hart'anský, R. and Halgoš, J., “The Problem of RF Radiator with Force Detector”, Proc. of the 11th Internat. Conf. on Measurement (Smolenice, Slovakia, May 2017), Slovak Acad. of Sci., Bratislava, 2017, 139–142

[21] Hart'anský, R., “Analysis of Omni-Directivity Error of Electromagnetic Field Probe Using Isotropic Antenna”, Meas. Sci. Rev., 16:6 (2016), 287–293 | DOI

[22] Hart'anský, R., Slížik, J., and Maršálka, L., “Dipole near Field Analysis: A Closed Form Calculation in Cartesian Coordinates”, J. Electr. Eng., 64:5 (2013), 327–330