Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_1_a10, author = {M. de la Cruz and N. Gaspar and R. Linares}, title = {The {Extended} {Rigid} {Body} and the {Pendulum} {Revisited}}, journal = {Russian journal of nonlinear dynamics}, pages = {133--159}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a10/} }
TY - JOUR AU - M. de la Cruz AU - N. Gaspar AU - R. Linares TI - The Extended Rigid Body and the Pendulum Revisited JO - Russian journal of nonlinear dynamics PY - 2020 SP - 133 EP - 159 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a10/ LA - en ID - ND_2020_16_1_a10 ER -
M. de la Cruz; N. Gaspar; R. Linares. The Extended Rigid Body and the Pendulum Revisited. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 133-159. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a10/
[1] Jacobi, C. G. J., Fundamenta nova theoriae functionum ellipticarum, Borntraeger, Königsberg, 1829, 191 pp.
[2] Whittaker, E. T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed., Cambridge Univ. Press, New York, 1989, 480 pp. | MR
[3] Du Val, P., Elliptic Functions and Elliptic Curves, London Math. Soc. Lecture Note Ser., 9, Cambridge Univ. Press, Cambridge, 1973, 256 pp. | MR | Zbl
[4] Lang, S., Elliptic Functions, Grad. Texts in Math., 112, Springer, New York, 1973, XII, 328 pp. | MR
[5] Lawden, D. F., Elliptic Functions and Applicaions, Appl. Math. Sci., 80, Springer, New York, 1989, 352 pp. | DOI | MR
[6] McKean, H. and Moll, V., Elliptic Curves: Function Theory, Geometry, Arithmetic, Cambridge Univ. Press, Cambridge, 1999, 298 pp. | MR | Zbl
[7] Armitage, J. V. and Eberlein, W. F., Elliptic Functions, London Math. Soc. Stud. Texts, 67, Cambridge Univ. Press, Cambridge, 2006, 404 pp. | MR | Zbl
[8] Poinsot, L., Outlines of a New Theory of Rotatory Motion, Cambridge Univ. Press, Cambridge, 1834, 96 pp.
[9] Landau, L. D. and Lifshitz, E. M., Course of Theoretical Physics, v. 1, Mechanics, 3rd ed., Pergamon, Oxford, 1976, 224 pp. | MR
[10] Marsden, J. E. and Ratiu, T. S., Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts Appl. Math., 17, Springer, New York, 1994, xvi+500 pp. | DOI | MR | Zbl
[11] Piña Garza, E., Dinámica de Rotaciones, Colección CBI, Univ. Autónoma Metropolitana, México, 1996, 214 pp. | MR
[12] Holm, D. D., Geometric Mechanics: P. 1. Dynamics and Symmetry, 2nd rev. ed., World Sci., Singapore, 2011, 466 pp.
[13] Appell, P., Principes de la théorie des fonctions elliptiques et applications, Gauthier-Villars, Paris, 1897, IX+421 pp.
[14] von Helmholtz, H., Vorlesungen über die Dynamik discreter Massenpunkte, Barth, Leipzig, 1898, 380 pp.
[15] Méndez-Fragoso, R. and Ley-Koo, E., “Angular Momentum Theory in Bases of Lamé Spheroconal Harmonics”, Adv. Quantum Chem., 71 (2015), 115–152 | DOI
[16] Abel, N. H., “Recherches sur les fonctions élliptiques”, J. Reine Angew. Math., 2 (1827), 101–181 | MR | Zbl
[17] Jacobi, C. G. J., “Demonstratio theorematis ad theoriam functionum ellipticarum spectantis”, Astron. Nachr., 6:10 (1827), 133–141 | DOI
[18] Beléndez, A., Pascual, C., Méndez, D. I., Beléndez, T., and Neipp, C., “Exact Solution for the Nonlinear Pendulum”, Rev. Bras. Ensino Fís., 29:4 (2007), 645–648 | DOI
[19] Ochs, K., “A Comprehensive Analytical Solution of the Nonlinear Pendulum”, Eur. J. Phys., 32:2 (2011), 479–490 | DOI | Zbl
[20] Linares, R., “Duality Symmetries behind Solutions of the Classical Simple Pendulum”, Rev. Mex. Fís. E, 64:2 (2018), 205–221 | DOI | MR
[21] Condon, E. U., “The Physical Pendulum in Quantum Mechanics”, Phys. Rev., 31:5 (1928), 891–894 | DOI | Zbl
[22] Pradhan, T. and Khare, A. V., “Plane Pendulum in Quantum Mechanics”, Am. J. Phys., 41:1 (1973), 59–66 | DOI
[23] Aldrovandi, R. and Leal Ferreira, P., “Quantum Pendulum”, Am. J. Phys., 48:8 (1980), 660–664 | DOI | MR
[24] Euler, L., “Du mouvement de rotation des corps solides autour d'un axe variable”, Mémoires de l'académie des sciences de Berlin, 14 (1765), 154–193; Opera Omnia, Ser. 2, 8, 200-235
[25] Kramers, H. A. and Ittmann, G. P., “Zur Quantelung des asymmetrischen Kreisels”, Z. Phys., 53 (1929), 553–565 | DOI | Zbl
[26] King, G. W., “The Asymmetric Rotor: 6. Calculation of Higher Energy Levels by Means of the Correspondence Principle”, J. Chem. Phys., 15:11 (1947), 820–830 | DOI
[27] Spence, R. D., “Angular Momentum in Sphero-Conal Coordinates”, Am. J. Phys., 27:5 (1959), 329–335 | DOI | MR | Zbl
[28] Zh. Èksper. Teoret. Fiz., 57:4 (1970), 1342–1348 (Russian) | MR
[29] Patera, J. and Winternitz, P., “A New Basis for the Representation of the Rotation Group. Lamé and Heun Polinomials”, J. Math. Phys., 14:8 (1973), 1130–1139 | DOI | MR | Zbl
[30] Piña, E., “Some Properties of the Spectra of Asymmetric Molecules”, J. Mol. Struc. THEOCHEM, 493:1–3 (1999), 159–170
[31] Valdés, M. T. and Piña, E., “The Rotational Spectra of the Most Asymmetric Molecules”, Rev. Mex. Fís., 52 (2006), 220–229
[32] Méndez-Fragoso, R. and Ley-Koo, E., “Rotations of Asymmetric Molecules and the Hydrogen Atom in Free and Confined Configurations”, Adv. Quantum Chem., 62 (2011), 137–213 | DOI
[33] Nambu, Y., “Generalized Hamiltonian Dynamics”, Phys. Rev. D (3), 7 (1973), 2405–2412 | DOI | MR | Zbl
[34] Deprit, A., “Free Rotation of a Rigid Body Studied in the Phase Plane”, Amer. J. Phys., 35:5 (1967), 424–428 | DOI
[35] Holm, D. D. and Marsden, J. E., “The Rotor and the Pendulum”, Symplectic Geometry and Mathematical Physics, Progr. Math., 99, Birkhäuser, Boston, Mass., 1991, 189–203 | MR
[36] Montgomery, R., “How Much Does the Rigid Body Rotate? A Berry's Phase from the 18th Century”, Am. J. Phys., 59:5 (1991), 394–398 | DOI | MR
[37] Van Damme, L., Leiner, D., Mardešić, P., Glaser, S. J., and Sugny, D., “Linking the Rotation of a Rigid Body to the Schrödinger Equation: The Quantum Tennis Racket Effect and Beyond”, Sci. Rep., 7:1 (2017), 14 | DOI
[38] Iwai, T. and Tarama, D., “Classical and Quantum Dynamics for an Extended Free Rigid Body”, Differential Geom. Appl., 28:5 (2010), 501–517 | DOI | MR | Zbl
[39] de la Cruz, M., Gaspar, N., Jiménez-Lara, L., and Linares, R., “Classification of the Classical $SL(2,\mathbb R)$ Gauge Transformations in the Rigid Body”, Ann. Physics, 379 (2017), 112–130 | DOI | MR | Zbl
[40] Brizard, A. J., “A Primer on Elliptic Functions with Applications in Classical Mechanics”, Eur. J. Phys., 30:4 (2009), 729–750 | DOI | MR | Zbl
[41] Appell, P., “Sur une interprétation des valeurs imaginaires du temps en Mécanique”, Comptes rendus hebdomadaires des séances de l'Académie des sciences, 87 (1878), 1074–1077
[42] David, D. and Holm, D. D., “Multiple Lie – Poisson Structures, Reductions, and Geometric Phases for the Maxwell – Bloch Travelling Wave Equations”, J. Nonlinear Sci., 2:2 (1992), 241–262 | DOI | MR | Zbl