The Extended Rigid Body and the Pendulum Revisited
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 133-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we revisit the construction by which the $SL(2,\mathbb{R})$ symmetry of the Euler equations allows a simple pendulum to be obtained from a rigid body. We begin by reviewing the original relation found by Holm and Marsden in which, starting from the two integrals of motion of the extended rigid body with Lie algebra $\mathfrak{iso}(2)$ and introducing a proper momentum map, it is possible to obtain both the Hamiltonian and the equations of motion of the pendulum. Important in this construction is the fact that both integrals of motion have the geometry of an elliptic cylinder. By considering the whole $SL(2,\mathbb{R})$ symmetry group, in this contribution we give all possible combinations of the integrals of motion and the corresponding momentum maps that produce the simple pendulum, showing that this system can also appear when the geometry of one of the integrals of motion is given by a hyperbolic cylinder and the other by an elliptic cylinder. As a result, we show that, from the extended rigid body with Lie algebra $\mathfrak{iso}(1,1)$, it is possible to obtain the pendulum, but only in circulating movement. Finally, as a byproduct of our analysis we provide the momentum maps that give origin to the pendulum with an imaginary time. Our discussion covers both the algebraic and the geometric point of view.
Keywords: free motion of a rigid body, simple pendulum, bi-Hamiltonian structures, momentum maps, symplectic reduction.
@article{ND_2020_16_1_a10,
     author = {M. de la Cruz and N. Gaspar and R. Linares},
     title = {The {Extended} {Rigid} {Body} and the {Pendulum} {Revisited}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {133--159},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a10/}
}
TY  - JOUR
AU  - M. de la Cruz
AU  - N. Gaspar
AU  - R. Linares
TI  - The Extended Rigid Body and the Pendulum Revisited
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 133
EP  - 159
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a10/
LA  - en
ID  - ND_2020_16_1_a10
ER  - 
%0 Journal Article
%A M. de la Cruz
%A N. Gaspar
%A R. Linares
%T The Extended Rigid Body and the Pendulum Revisited
%J Russian journal of nonlinear dynamics
%D 2020
%P 133-159
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a10/
%G en
%F ND_2020_16_1_a10
M. de la Cruz; N. Gaspar; R. Linares. The Extended Rigid Body and the Pendulum Revisited. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 133-159. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a10/

[1] Jacobi, C. G. J., Fundamenta nova theoriae functionum ellipticarum, Borntraeger, Königsberg, 1829, 191 pp.

[2] Whittaker, E. T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed., Cambridge Univ. Press, New York, 1989, 480 pp. | MR

[3] Du Val, P., Elliptic Functions and Elliptic Curves, London Math. Soc. Lecture Note Ser., 9, Cambridge Univ. Press, Cambridge, 1973, 256 pp. | MR | Zbl

[4] Lang, S., Elliptic Functions, Grad. Texts in Math., 112, Springer, New York, 1973, XII, 328 pp. | MR

[5] Lawden, D. F., Elliptic Functions and Applicaions, Appl. Math. Sci., 80, Springer, New York, 1989, 352 pp. | DOI | MR

[6] McKean, H. and Moll, V., Elliptic Curves: Function Theory, Geometry, Arithmetic, Cambridge Univ. Press, Cambridge, 1999, 298 pp. | MR | Zbl

[7] Armitage, J. V. and Eberlein, W. F., Elliptic Functions, London Math. Soc. Stud. Texts, 67, Cambridge Univ. Press, Cambridge, 2006, 404 pp. | MR | Zbl

[8] Poinsot, L., Outlines of a New Theory of Rotatory Motion, Cambridge Univ. Press, Cambridge, 1834, 96 pp.

[9] Landau, L. D. and Lifshitz, E. M., Course of Theoretical Physics, v. 1, Mechanics, 3rd ed., Pergamon, Oxford, 1976, 224 pp. | MR

[10] Marsden, J. E. and Ratiu, T. S., Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts Appl. Math., 17, Springer, New York, 1994, xvi+500 pp. | DOI | MR | Zbl

[11] Piña Garza, E., Dinámica de Rotaciones, Colección CBI, Univ. Autónoma Metropolitana, México, 1996, 214 pp. | MR

[12] Holm, D. D., Geometric Mechanics: P. 1. Dynamics and Symmetry, 2nd rev. ed., World Sci., Singapore, 2011, 466 pp.

[13] Appell, P., Principes de la théorie des fonctions elliptiques et applications, Gauthier-Villars, Paris, 1897, IX+421 pp.

[14] von Helmholtz, H., Vorlesungen über die Dynamik discreter Massenpunkte, Barth, Leipzig, 1898, 380 pp.

[15] Méndez-Fragoso, R. and Ley-Koo, E., “Angular Momentum Theory in Bases of Lamé Spheroconal Harmonics”, Adv. Quantum Chem., 71 (2015), 115–152 | DOI

[16] Abel, N. H., “Recherches sur les fonctions élliptiques”, J. Reine Angew. Math., 2 (1827), 101–181 | MR | Zbl

[17] Jacobi, C. G. J., “Demonstratio theorematis ad theoriam functionum ellipticarum spectantis”, Astron. Nachr., 6:10 (1827), 133–141 | DOI

[18] Beléndez, A., Pascual, C., Méndez, D. I., Beléndez, T., and Neipp, C., “Exact Solution for the Nonlinear Pendulum”, Rev. Bras. Ensino Fís., 29:4 (2007), 645–648 | DOI

[19] Ochs, K., “A Comprehensive Analytical Solution of the Nonlinear Pendulum”, Eur. J. Phys., 32:2 (2011), 479–490 | DOI | Zbl

[20] Linares, R., “Duality Symmetries behind Solutions of the Classical Simple Pendulum”, Rev. Mex. Fís. E, 64:2 (2018), 205–221 | DOI | MR

[21] Condon, E. U., “The Physical Pendulum in Quantum Mechanics”, Phys. Rev., 31:5 (1928), 891–894 | DOI | Zbl

[22] Pradhan, T. and Khare, A. V., “Plane Pendulum in Quantum Mechanics”, Am. J. Phys., 41:1 (1973), 59–66 | DOI

[23] Aldrovandi, R. and Leal Ferreira, P., “Quantum Pendulum”, Am. J. Phys., 48:8 (1980), 660–664 | DOI | MR

[24] Euler, L., “Du mouvement de rotation des corps solides autour d'un axe variable”, Mémoires de l'académie des sciences de Berlin, 14 (1765), 154–193; Opera Omnia, Ser. 2, 8, 200-235

[25] Kramers, H. A. and Ittmann, G. P., “Zur Quantelung des asymmetrischen Kreisels”, Z. Phys., 53 (1929), 553–565 | DOI | Zbl

[26] King, G. W., “The Asymmetric Rotor: 6. Calculation of Higher Energy Levels by Means of the Correspondence Principle”, J. Chem. Phys., 15:11 (1947), 820–830 | DOI

[27] Spence, R. D., “Angular Momentum in Sphero-Conal Coordinates”, Am. J. Phys., 27:5 (1959), 329–335 | DOI | MR | Zbl

[28] Zh. Èksper. Teoret. Fiz., 57:4 (1970), 1342–1348 (Russian) | MR

[29] Patera, J. and Winternitz, P., “A New Basis for the Representation of the Rotation Group. Lamé and Heun Polinomials”, J. Math. Phys., 14:8 (1973), 1130–1139 | DOI | MR | Zbl

[30] Piña, E., “Some Properties of the Spectra of Asymmetric Molecules”, J. Mol. Struc. THEOCHEM, 493:1–3 (1999), 159–170

[31] Valdés, M. T. and Piña, E., “The Rotational Spectra of the Most Asymmetric Molecules”, Rev. Mex. Fís., 52 (2006), 220–229

[32] Méndez-Fragoso, R. and Ley-Koo, E., “Rotations of Asymmetric Molecules and the Hydrogen Atom in Free and Confined Configurations”, Adv. Quantum Chem., 62 (2011), 137–213 | DOI

[33] Nambu, Y., “Generalized Hamiltonian Dynamics”, Phys. Rev. D (3), 7 (1973), 2405–2412 | DOI | MR | Zbl

[34] Deprit, A., “Free Rotation of a Rigid Body Studied in the Phase Plane”, Amer. J. Phys., 35:5 (1967), 424–428 | DOI

[35] Holm, D. D. and Marsden, J. E., “The Rotor and the Pendulum”, Symplectic Geometry and Mathematical Physics, Progr. Math., 99, Birkhäuser, Boston, Mass., 1991, 189–203 | MR

[36] Montgomery, R., “How Much Does the Rigid Body Rotate? A Berry's Phase from the 18th Century”, Am. J. Phys., 59:5 (1991), 394–398 | DOI | MR

[37] Van Damme, L., Leiner, D., Mardešić, P., Glaser, S. J., and Sugny, D., “Linking the Rotation of a Rigid Body to the Schrödinger Equation: The Quantum Tennis Racket Effect and Beyond”, Sci. Rep., 7:1 (2017), 14 | DOI

[38] Iwai, T. and Tarama, D., “Classical and Quantum Dynamics for an Extended Free Rigid Body”, Differential Geom. Appl., 28:5 (2010), 501–517 | DOI | MR | Zbl

[39] de la Cruz, M., Gaspar, N., Jiménez-Lara, L., and Linares, R., “Classification of the Classical $SL(2,\mathbb R)$ Gauge Transformations in the Rigid Body”, Ann. Physics, 379 (2017), 112–130 | DOI | MR | Zbl

[40] Brizard, A. J., “A Primer on Elliptic Functions with Applications in Classical Mechanics”, Eur. J. Phys., 30:4 (2009), 729–750 | DOI | MR | Zbl

[41] Appell, P., “Sur une interprétation des valeurs imaginaires du temps en Mécanique”, Comptes rendus hebdomadaires des séances de l'Académie des sciences, 87 (1878), 1074–1077

[42] David, D. and Holm, D. D., “Multiple Lie – Poisson Structures, Reductions, and Geometric Phases for the Maxwell – Bloch Travelling Wave Equations”, J. Nonlinear Sci., 2:2 (1992), 241–262 | DOI | MR | Zbl