Some Lattice Models with Hyperbolic Chaotic Attractors
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 13-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Examples of one-dimensional lattice systems are considered, in which patterns of different spatial scales arise alternately, so that the spatial phase over a full cycle undergoes transformation according to an expanding circle map that implies the occurrence of Smale – Williams attractors in the multidimensional state space. These models can serve as a basis for design electronic generators of robust chaos within a paradigm of coupled cellular networks. One of the examples is a mechanical pendulum system interesting and demonstrative for research and educational experimental studies.
Keywords: dynamical system, attractor, Smale – Williams solenoid, Turing pattern, pendulum, parametric oscillations, cellular neural network.
Mots-clés : chaos
@article{ND_2020_16_1_a1,
     author = {S. P. Kuznetsov},
     title = {Some {Lattice} {Models} with {Hyperbolic} {Chaotic} {Attractors}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {13--21},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a1/}
}
TY  - JOUR
AU  - S. P. Kuznetsov
TI  - Some Lattice Models with Hyperbolic Chaotic Attractors
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 13
EP  - 21
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a1/
LA  - en
ID  - ND_2020_16_1_a1
ER  - 
%0 Journal Article
%A S. P. Kuznetsov
%T Some Lattice Models with Hyperbolic Chaotic Attractors
%J Russian journal of nonlinear dynamics
%D 2020
%P 13-21
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a1/
%G en
%F ND_2020_16_1_a1
S. P. Kuznetsov. Some Lattice Models with Hyperbolic Chaotic Attractors. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 13-21. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a1/

[1] Dynamical Systems 9: Dynamical Systems with Hyperbolic Behaviour, Encyclopaedia Math. Sci., 66, ed. D. V. Anosov, Springer, Berlin, 1995, 236 pp.

[2] Elhadj, Z. and Sprott, J. C., Robust Chaos and Its Applications, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 79, World Sci., Hackensack, N.J., 2011, 472 pp. | MR

[3] Uspekhi Fiz. Nauk, 181:2 (2011), 121–149 (Russian) | DOI | DOI

[4] Kuptsov, P. V., Kuznetsov, S. P., and Pikovsky, A., “Hyperbolic Chaos of Turing Patterns”, Phys. Rev. Lett., 108:19 (2012), 194101, 4 pp. | DOI

[5] Isaeva, O. B., Kuznetsov, A. S., and Kuznetsov, S. P., “Hyperbolic Chaos of Standing Wave Patterns Generated Parametrically by a Modulated Pump Source”, Phys. Rev. E, 87:4 (2013), 040901(R), 4 pp. | DOI

[6] Kruglov, V. P., Kuznetsov, S. P., and Pikovsky, A., “Attractor of Smale – Williams Type in an Autonomous Distributed System”, Regul. Chaotic Dyn., 19:4 (2014), 483–494 | DOI | MR | Zbl

[7] Chua, L. O. and Roska, T., Cellular Neural Networks and Visual Computing: Foundations and Applications, Cambridge Univ. Press, Cambridge, 2002, 410 pp.

[8] Butikov, E. I., Pendulum with Oscillating Suspension (60 Years of Kapitza Pendulum), 2017, 42 pp. (Russian)

[9] The sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, eds. J. Cuevas-Maraver, P. Kevrekidis, F. Williams, Springer, Cham, 2014, XIII, 263 pp. | MR | Zbl