Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_1_a1, author = {S. P. Kuznetsov}, title = {Some {Lattice} {Models} with {Hyperbolic} {Chaotic} {Attractors}}, journal = {Russian journal of nonlinear dynamics}, pages = {13--21}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a1/} }
S. P. Kuznetsov. Some Lattice Models with Hyperbolic Chaotic Attractors. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 13-21. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a1/
[1] Dynamical Systems 9: Dynamical Systems with Hyperbolic Behaviour, Encyclopaedia Math. Sci., 66, ed. D. V. Anosov, Springer, Berlin, 1995, 236 pp.
[2] Elhadj, Z. and Sprott, J. C., Robust Chaos and Its Applications, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 79, World Sci., Hackensack, N.J., 2011, 472 pp. | MR
[3] Uspekhi Fiz. Nauk, 181:2 (2011), 121–149 (Russian) | DOI | DOI
[4] Kuptsov, P. V., Kuznetsov, S. P., and Pikovsky, A., “Hyperbolic Chaos of Turing Patterns”, Phys. Rev. Lett., 108:19 (2012), 194101, 4 pp. | DOI
[5] Isaeva, O. B., Kuznetsov, A. S., and Kuznetsov, S. P., “Hyperbolic Chaos of Standing Wave Patterns Generated Parametrically by a Modulated Pump Source”, Phys. Rev. E, 87:4 (2013), 040901(R), 4 pp. | DOI
[6] Kruglov, V. P., Kuznetsov, S. P., and Pikovsky, A., “Attractor of Smale – Williams Type in an Autonomous Distributed System”, Regul. Chaotic Dyn., 19:4 (2014), 483–494 | DOI | MR | Zbl
[7] Chua, L. O. and Roska, T., Cellular Neural Networks and Visual Computing: Foundations and Applications, Cambridge Univ. Press, Cambridge, 2002, 410 pp.
[8] Butikov, E. I., Pendulum with Oscillating Suspension (60 Years of Kapitza Pendulum), 2017, 42 pp. (Russian)
[9] The sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, eds. J. Cuevas-Maraver, P. Kevrekidis, F. Williams, Springer, Cham, 2014, XIII, 263 pp. | MR | Zbl