Some Lattice Models with Hyperbolic Chaotic Attractors
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 13-21

Voir la notice de l'article provenant de la source Math-Net.Ru

Examples of one-dimensional lattice systems are considered, in which patterns of different spatial scales arise alternately, so that the spatial phase over a full cycle undergoes transformation according to an expanding circle map that implies the occurrence of Smale – Williams attractors in the multidimensional state space. These models can serve as a basis for design electronic generators of robust chaos within a paradigm of coupled cellular networks. One of the examples is a mechanical pendulum system interesting and demonstrative for research and educational experimental studies.
Keywords: dynamical system, attractor, Smale – Williams solenoid, Turing pattern, pendulum, parametric oscillations, cellular neural network.
Mots-clés : chaos
@article{ND_2020_16_1_a1,
     author = {S. P. Kuznetsov},
     title = {Some {Lattice} {Models} with {Hyperbolic} {Chaotic} {Attractors}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {13--21},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a1/}
}
TY  - JOUR
AU  - S. P. Kuznetsov
TI  - Some Lattice Models with Hyperbolic Chaotic Attractors
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 13
EP  - 21
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a1/
LA  - en
ID  - ND_2020_16_1_a1
ER  - 
%0 Journal Article
%A S. P. Kuznetsov
%T Some Lattice Models with Hyperbolic Chaotic Attractors
%J Russian journal of nonlinear dynamics
%D 2020
%P 13-21
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a1/
%G en
%F ND_2020_16_1_a1
S. P. Kuznetsov. Some Lattice Models with Hyperbolic Chaotic Attractors. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 13-21. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a1/