Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_1_a0, author = {L. G. Kurakin and I. A. Lysenko}, title = {On the {Stability} of the {Orbit} and the {Invariant} {Set} of {Thomson{\textquoteright}s} {Vortex} {Polygon} in a {Two-Fluid} {Plasma}}, journal = {Russian journal of nonlinear dynamics}, pages = {3--11}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a0/} }
TY - JOUR AU - L. G. Kurakin AU - I. A. Lysenko TI - On the Stability of the Orbit and the Invariant Set of Thomson’s Vortex Polygon in a Two-Fluid Plasma JO - Russian journal of nonlinear dynamics PY - 2020 SP - 3 EP - 11 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a0/ LA - en ID - ND_2020_16_1_a0 ER -
%0 Journal Article %A L. G. Kurakin %A I. A. Lysenko %T On the Stability of the Orbit and the Invariant Set of Thomson’s Vortex Polygon in a Two-Fluid Plasma %J Russian journal of nonlinear dynamics %D 2020 %P 3-11 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a0/ %G en %F ND_2020_16_1_a0
L. G. Kurakin; I. A. Lysenko. On the Stability of the Orbit and the Invariant Set of Thomson’s Vortex Polygon in a Two-Fluid Plasma. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a0/
[1] Alfvén, H., “On the Existence of Electromagnetic-Hydromagnetic Waves”, Arc. f. Mat. Ast. Fys., 29B:2 (1942), 7 pp. | MR
[2] Batchelor, G. K., “On the Spontaneous Magnetic Field in a Conducting Liquid in Turbulent Motion”, Proc. Roy. Soc. London Ser. A, 201:1066 (1950), 405–416 | DOI | MR | Zbl
[3] Bergmans, J., Kuvshinov, B. N., Lakhin, V. P., and Schep, T. J., “Spectral Stability of Alfvén Filament Configurations”, Phys. Plasmas, 7:6 (2000), 2388–2403 | DOI
[4] Borisov, A. V. and Mamaev, I. S., Mathematical Methods in the Dynamics of Vortex Structures, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 368 pp. (Russian) | MR
[5] Havelock, T. H., “The Stability of Motion of Rectilinear Vortices in Ring Formation”, Philos. Mag., 11:70 (1931), 617–633 | DOI
[6] Karapetyan, A. V., “Invariant Sets of Mechanical Systems: Lyapunov's Methods in Stability and Control”, Math. Comput. Modelling, 36:6 (2002), 643–661 | DOI | MR | Zbl
[7] Kelvin, W. T., Mathematical and Physical Papers, v. 4, Cambridge Univ. Press, Cambridge, 1910 | Zbl
[8] Krall, N. A. and Trivelpiece, A. W., Principles of Plasma Physics, McGraw-Hill, New York, 1973, 674 pp.
[9] Kurakin, L. G. and Yudovich, V. I., “The Stability of Stationary Rotation of a Regular Vortex Polygon”, Chaos, 12:3 (2002), 574–595 | DOI | MR | Zbl
[10] Dokl. Akad. Nauk, 384:4 (2002), 476–482 (Russian) | DOI | MR
[11] Dokl. Akad. Nauk, 399:1 (2004), 52–55 (Russian) | DOI | MR | MR
[12] Kurakin, L. G. and Ostrovskaya, I. V., “Nonlinear Stability Analysis of a Regular Vortex Pentagon Outside a Circle”, Regul. Chaotic Dyn., 17:5 (2012), 385–396 | DOI | MR | Zbl
[13] Kurakin, L. G., Ostrovskaya, I. V., and Sokolovskiy, M. A., “On the Stability of Discrete Tripole, Quadrupole, Thomson' Vortex Triangle and Square in a Two-Layer/Homogeneous Rotating Fluid”, Regul. Chaotic Dyn., 21:3 (2016), 291–334 | DOI | MR | Zbl
[14] Kurakin, L. G. and Ostrovskaya, I. V., “On Stability of the Thomson's Vortex $N$-Gon in the Geostrophic Model of the Point Bessel Vortices”, Regul. Chaotic Dyn., 22:7 (2017), 865–879 | DOI | MR | Zbl
[15] Kurakin, L. G., Lysenko, I. A., Ostrovskaya, I. V., and Sokolovskiy, M. A., “On Stability of the Thomson's Vortex $N$-Gon in the Geostrophic Model of the Point Vortices in Two-Layer Fluid”, J. Nonlinear Sci., 29:4 (2019), 1659–1700 | DOI | MR | Zbl
[16] Lysenko, I. A., “On Stability of a Vortex Triangle, Square and Pentagon in the Two-Fluid Plasma”, Izv. Vyssh. Uchebn. Zaved. Severo-Kavkazskii Region. Natural Science, 2019, no. 1, 17–23 (Russian)
[17] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)
[18] Morikawa, G. K. and Swenson, E. V., “Interacting Motion of Rectilinear Geostrophic Vortices”, Phys. Fluids, 14:6 (1971), 1058–1073 | DOI
[19] Routh, E. J., A Treatise on the Stability of a Given State of Motion, Particularly Steady Motion, Macmillan, London, 1877, 108 pp.
[20] Sokolovskiy, M. A. and Verron, J., Dynamics of Vortex Structures in a Stratified Rotating Fluid, Atmos. Oceanogr. Sci. Libr., 47, Springer, Cham, 2014, XII, 382 pp. | DOI | MR | Zbl
[21] Stewart, H. J., “Periodic Properties of the Semi-Permanent Atmospheric Pressure Systems”, Quart. Appl. Math., 1 (1943), 262–267 | DOI | MR | Zbl
[22] Stewart, H. J., “Hydrodynamic Problems Arising from the Investigation of the Transverse Circulation in the Atmosphere”, Bull. Amer. Math. Soc., 51 (1945), 781–799 | DOI | MR | Zbl
[23] Thomson, W., “Floating Magnets (Illustrating Vortex Systems)”, Nature, 18 (1878), 13–14 | DOI
[24] Thomson, J. J., Treatise on the Motion of Vortex Rings, Macmillan, London, 1883, 156 pp. | Zbl