On the Stability of the Orbit and the Invariant Set of Thomson’s Vortex Polygon in a Two-Fluid Plasma
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The motion of the system of $N$ point vortices with identical intensity $\Gamma$ in the Alfven model of a two-fluid plasma is considered. The stability of the stationary rotation of $N$ identical vortices disposed uniformly on a circle with radius $R$ is studied for $N = 2,\ldots,5$. This problem has three parameters: the discrete parameter $N$ and two continuous parameters $R$ and $c$, where $c>0$ is the value characterizing the plasma. Two different definitions of the stability are used - the orbital stability and the stability of a three-dimensional invariant set founded by the orbits of a continuous family of stationary rotations. Instability is interpreted as instability of equilibrium of the reduced system. An analytical analysis of eigenvalues of the linearization matrix and the quadratic part of the Hamiltonian is given. As a result, the parameter space $(N,R,c)$ of this problem for two stability definitions considered is divided into three parts: the domain $\boldsymbol{A}$ of stability in an exact nonlinear problem setting, the linear stability domain $\boldsymbol{B}$, where the nonlinear analysis is needed, and the domain of exponential instability $\boldsymbol{C}$. The application of the stability theory of invariant sets for the systems with a few integrals for $N=2,3,4$ allows one to obtain new statements about the stability in the domains, where nonlinear analysis is needed in investigating the orbital stability.
Keywords: two-fluid plasma, stability, stationary rotation, Hamiltonian system
Mots-clés : point vortex, invariant set.
@article{ND_2020_16_1_a0,
     author = {L. G. Kurakin and I. A. Lysenko},
     title = {On the {Stability} of the {Orbit} and the {Invariant} {Set} of {Thomson{\textquoteright}s} {Vortex} {Polygon} in a {Two-Fluid} {Plasma}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a0/}
}
TY  - JOUR
AU  - L. G. Kurakin
AU  - I. A. Lysenko
TI  - On the Stability of the Orbit and the Invariant Set of Thomson’s Vortex Polygon in a Two-Fluid Plasma
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 3
EP  - 11
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a0/
LA  - en
ID  - ND_2020_16_1_a0
ER  - 
%0 Journal Article
%A L. G. Kurakin
%A I. A. Lysenko
%T On the Stability of the Orbit and the Invariant Set of Thomson’s Vortex Polygon in a Two-Fluid Plasma
%J Russian journal of nonlinear dynamics
%D 2020
%P 3-11
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a0/
%G en
%F ND_2020_16_1_a0
L. G. Kurakin; I. A. Lysenko. On the Stability of the Orbit and the Invariant Set of Thomson’s Vortex Polygon in a Two-Fluid Plasma. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a0/

[1] Alfvén, H., “On the Existence of Electromagnetic-Hydromagnetic Waves”, Arc. f. Mat. Ast. Fys., 29B:2 (1942), 7 pp. | MR

[2] Batchelor, G. K., “On the Spontaneous Magnetic Field in a Conducting Liquid in Turbulent Motion”, Proc. Roy. Soc. London Ser. A, 201:1066 (1950), 405–416 | DOI | MR | Zbl

[3] Bergmans, J., Kuvshinov, B. N., Lakhin, V. P., and Schep, T. J., “Spectral Stability of Alfvén Filament Configurations”, Phys. Plasmas, 7:6 (2000), 2388–2403 | DOI

[4] Borisov, A. V. and Mamaev, I. S., Mathematical Methods in the Dynamics of Vortex Structures, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 368 pp. (Russian) | MR

[5] Havelock, T. H., “The Stability of Motion of Rectilinear Vortices in Ring Formation”, Philos. Mag., 11:70 (1931), 617–633 | DOI

[6] Karapetyan, A. V., “Invariant Sets of Mechanical Systems: Lyapunov's Methods in Stability and Control”, Math. Comput. Modelling, 36:6 (2002), 643–661 | DOI | MR | Zbl

[7] Kelvin, W. T., Mathematical and Physical Papers, v. 4, Cambridge Univ. Press, Cambridge, 1910 | Zbl

[8] Krall, N. A. and Trivelpiece, A. W., Principles of Plasma Physics, McGraw-Hill, New York, 1973, 674 pp.

[9] Kurakin, L. G. and Yudovich, V. I., “The Stability of Stationary Rotation of a Regular Vortex Polygon”, Chaos, 12:3 (2002), 574–595 | DOI | MR | Zbl

[10] Dokl. Akad. Nauk, 384:4 (2002), 476–482 (Russian) | DOI | MR

[11] Dokl. Akad. Nauk, 399:1 (2004), 52–55 (Russian) | DOI | MR | MR

[12] Kurakin, L. G. and Ostrovskaya, I. V., “Nonlinear Stability Analysis of a Regular Vortex Pentagon Outside a Circle”, Regul. Chaotic Dyn., 17:5 (2012), 385–396 | DOI | MR | Zbl

[13] Kurakin, L. G., Ostrovskaya, I. V., and Sokolovskiy, M. A., “On the Stability of Discrete Tripole, Quadrupole, Thomson' Vortex Triangle and Square in a Two-Layer/Homogeneous Rotating Fluid”, Regul. Chaotic Dyn., 21:3 (2016), 291–334 | DOI | MR | Zbl

[14] Kurakin, L. G. and Ostrovskaya, I. V., “On Stability of the Thomson's Vortex $N$-Gon in the Geostrophic Model of the Point Bessel Vortices”, Regul. Chaotic Dyn., 22:7 (2017), 865–879 | DOI | MR | Zbl

[15] Kurakin, L. G., Lysenko, I. A., Ostrovskaya, I. V., and Sokolovskiy, M. A., “On Stability of the Thomson's Vortex $N$-Gon in the Geostrophic Model of the Point Vortices in Two-Layer Fluid”, J. Nonlinear Sci., 29:4 (2019), 1659–1700 | DOI | MR | Zbl

[16] Lysenko, I. A., “On Stability of a Vortex Triangle, Square and Pentagon in the Two-Fluid Plasma”, Izv. Vyssh. Uchebn. Zaved. Severo-Kavkazskii Region. Natural Science, 2019, no. 1, 17–23 (Russian)

[17] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)

[18] Morikawa, G. K. and Swenson, E. V., “Interacting Motion of Rectilinear Geostrophic Vortices”, Phys. Fluids, 14:6 (1971), 1058–1073 | DOI

[19] Routh, E. J., A Treatise on the Stability of a Given State of Motion, Particularly Steady Motion, Macmillan, London, 1877, 108 pp.

[20] Sokolovskiy, M. A. and Verron, J., Dynamics of Vortex Structures in a Stratified Rotating Fluid, Atmos. Oceanogr. Sci. Libr., 47, Springer, Cham, 2014, XII, 382 pp. | DOI | MR | Zbl

[21] Stewart, H. J., “Periodic Properties of the Semi-Permanent Atmospheric Pressure Systems”, Quart. Appl. Math., 1 (1943), 262–267 | DOI | MR | Zbl

[22] Stewart, H. J., “Hydrodynamic Problems Arising from the Investigation of the Transverse Circulation in the Atmosphere”, Bull. Amer. Math. Soc., 51 (1945), 781–799 | DOI | MR | Zbl

[23] Thomson, W., “Floating Magnets (Illustrating Vortex Systems)”, Nature, 18 (1878), 13–14 | DOI

[24] Thomson, J. J., Treatise on the Motion of Vortex Rings, Macmillan, London, 1883, 156 pp. | Zbl