Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 457-475

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the nonholonomic problem of rolling without slipping and twisting of a balanced ball over a fixed sphere in $\mathbb{R}^n$. By relating the system to a modified LR system, we prove that the problem always has an invariant measure. Moreover, this is a $SO(n)$-Chaplygin system that reduces to the cotangent bundle $T^*S^{n-1}$. We present two integrable cases. The first one is obtained for a special inertia operator that allows the Chaplygin Hamiltonization of the reduced system. In the second case, we consider the rigid body inertia operator $\mathbb I\omega=I\omega+\omega I$, ${I=diag(I_1,\ldots,I_n)}$ with a symmetry $I_1=I_2=\ldots=I_{r} \ne I_{r+1}=I_{r+2}=\ldots=I_n$. It is shown that general trajectories are quasi-periodic, while for $r\ne 1$, $n-1$ the Chaplygin reducing multiplier method does not apply.
Keywords: nonholonomic Chaplygin systems, invariant measure, integrability.
@article{ND_2019_15_4_a5,
     author = {B. Gaji\'c and B. Jovanovi\'c},
     title = {Two {Integrable} {Cases} of a {Ball} {Rolling} over a {Sphere} in $\mathbb{R}^n$},
     journal = {Russian journal of nonlinear dynamics},
     pages = {457--475},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a5/}
}
TY  - JOUR
AU  - B. Gajić
AU  - B. Jovanović
TI  - Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 457
EP  - 475
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a5/
LA  - en
ID  - ND_2019_15_4_a5
ER  - 
%0 Journal Article
%A B. Gajić
%A B. Jovanović
%T Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$
%J Russian journal of nonlinear dynamics
%D 2019
%P 457-475
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a5/
%G en
%F ND_2019_15_4_a5
B. Gajić; B. Jovanović. Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 457-475. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a5/