Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 457-475.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the nonholonomic problem of rolling without slipping and twisting of a balanced ball over a fixed sphere in $\mathbb{R}^n$. By relating the system to a modified LR system, we prove that the problem always has an invariant measure. Moreover, this is a $SO(n)$-Chaplygin system that reduces to the cotangent bundle $T^*S^{n-1}$. We present two integrable cases. The first one is obtained for a special inertia operator that allows the Chaplygin Hamiltonization of the reduced system. In the second case, we consider the rigid body inertia operator $\mathbb I\omega=I\omega+\omega I$, ${I=diag(I_1,\ldots,I_n)}$ with a symmetry $I_1=I_2=\ldots=I_{r} \ne I_{r+1}=I_{r+2}=\ldots=I_n$. It is shown that general trajectories are quasi-periodic, while for $r\ne 1$, $n-1$ the Chaplygin reducing multiplier method does not apply.
Keywords: nonholonomic Chaplygin systems, invariant measure, integrability.
@article{ND_2019_15_4_a5,
     author = {B. Gaji\'c and B. Jovanovi\'c},
     title = {Two {Integrable} {Cases} of a {Ball} {Rolling} over a {Sphere} in $\mathbb{R}^n$},
     journal = {Russian journal of nonlinear dynamics},
     pages = {457--475},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a5/}
}
TY  - JOUR
AU  - B. Gajić
AU  - B. Jovanović
TI  - Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 457
EP  - 475
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a5/
LA  - en
ID  - ND_2019_15_4_a5
ER  - 
%0 Journal Article
%A B. Gajić
%A B. Jovanović
%T Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$
%J Russian journal of nonlinear dynamics
%D 2019
%P 457-475
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a5/
%G en
%F ND_2019_15_4_a5
B. Gajić; B. Jovanović. Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 457-475. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a5/

[1] Arnol'd, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl

[2] Mat. Vesnik, 27 (1975), 233–240 (Russian) | DOI | Zbl

[3] Bolsinov, A. V., Borisov, A. V., and Mamaev, I. S., “Rolling of a Ball without Spinning on a Plane: The Absence of an Invariant Measure in a System with a Complete Set of Integrals”, Regul. Chaotic Dyn., 17:6 (2012), 571–579 | DOI | MR | Zbl

[4] Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., “The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328 | DOI | MR | Zbl

[5] Bolsinov, A. V., Borisov, A. V., and Mamaev, I. S., “Geometrisation of Chaplygin's Reducing Multiplier Theorem”, Nonlinearity, 28:7 (2015), 2307–2318 | DOI | MR | Zbl

[6] Bolsinov, A. V., “Complete Commutative Subalgebras in Polynomial Poisson Algebras: A Proof of the Mischenko – Fomenko Conjecture”, Theor. Appl. Mech., 43:2 (2016), 145–168 | DOI

[7] Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 6, 102–105 (Russian) | MR | Zbl

[8] Borisov, A. V., Fedorov, Yu. N., and Mamaev, I. S., “Chaplygin Ball over a Fixed Sphere: An Explicit Integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571 | DOI | MR | Zbl

[9] Borisov, A. V. and Mamaev, I. S., “Rolling of a Non-Homogeneous Ball over a Sphere without Slipping and Twisting”, Regul. Chaotic Dyn., 12:2 (2007), 153–159 | DOI | MR | Zbl

[10] Borisov, A. V., Mamaev, I. S., and Treschev, D. V., “Rolling of a Rigid Body without Slipping and Spinning: Kinematics and Dynamics”, J. Appl. Nonlinear Dyn., 2:2 (2013), 161–173 | DOI | Zbl

[11] Braden, H. W., “A Completely Integrable Mechanical System”, Lett. Math. Phys., 6:6 (1982), 449–452 | DOI | MR | Zbl

[12] Cantrijn, F., Cortés, J., de León, M., and Martín de Diego, D., “On the Geometry of Generalized Chaplygin Systems”, Math. Proc. Cambridge Philos. Soc., 132:2 (2002), 323–351 | DOI | MR | Zbl

[13] Math. Sb., 24:1 (1903), 139–168 (Russian) | DOI | MR | Zbl

[14] Mat. Sb., 28:2 (1912), 303–314 (Russian) | DOI | MR | Zbl

[15] Davison, Ch. M., Dullin, H. R., and Bolsinov, A. V., “Geodesics on the Ellipsoid and Monodromy”, J. Geom. Phys., 57:12 (2007), 2437–2454 | DOI | MR | Zbl

[16] Ehlers, K., Koiller, J., Montgomery, R., and Rios, P. M., “Nonholonomic Systems via Moving Frames: Cartan Equivalence and Chaplygin Hamiltonization”, The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhäuser, Boston, Mass., 2005, 75–120 | DOI | MR | Zbl

[17] Koiller, J. and Ehlers, K., “Rubber Rolling over a Sphere”, Regul. Chaotic Dyn., 12:2 (2007), 127–152 | DOI | MR | Zbl

[18] Fassò, F., García-Naranjo, L. C., and Montaldi, J., “Integrability and Dynamics of the $n$-Dimensional Symmetric Veselova Top”, J. Nonlinear Sci., 29:3 (2019), 1205–1246 | DOI | MR | Zbl

[19] Fassò, F., García-Naranjo, L. C., and Sansonetto, N., “Moving Energies As First Integrals of Nonholonomic Systems with Affine Constraints”, Nonlinearity, 31:3 (2018), 755–782 | DOI | MR | Zbl

[20] Fedorov, Yu. N. and Jovanović, B., “Nonholonomic LR Systems As Generalized Chaplygin Systems with an Invariant Measure and Flows on Homogeneous Spaces”, J. Nonlinear Sci., 14:4 (2004), 341–381 | DOI | MR | Zbl

[21] Fedorov, Yu. N. and Kozlov, V. V., “Various Aspects of $n$-Dimensional Rigid Body Dynamics”, Amer. Math. Soc. Transl. Ser. 2, 168 (1995), 141–171 | MR | Zbl

[22] Field, M. J., “Equivariant Dynamical Systems”, Trans. Amer. Math. Soc., 259:1 (1980), 185–205 | DOI | MR | Zbl

[23] Gajić, B., “The Rigid Body Dynamics: Classical and Algebro-Geometric Integration”, Zb. Rad. (Beogr.), 16(24) (2013), 5–44 | MR | Zbl

[24] Gajić, B. and Jovanović, B., “Nonholonomic Connections, Time Reparametrizations, and Integrability of the Rolling Ball over a Sphere”, Nonlinearity, 32:5 (2019), 1675–1694 | DOI | MR | Zbl

[25] García-Naranjo, L. C., “Generalisation of Chaplygin's Reducing Multiplier Theorem with an Application to Multi-Dimensional Nonholonomic Dynamics”, J. Phys. A, 52:20 (2019), 205203, 16 pp. | DOI | MR

[26] García-Naranjo, L. C., “Hamiltonisation, Measure Preservation and First Integrals of the Multi-Dimensional Rubber Routh Sphere”, Theor. Appl. Mech., 46:1 (2019), 65–88 | DOI

[27] Jovanović, B., “Note on a Ball Rolling over a Sphere: Integrable Chaplygin System with an Invariant Measure without Chaplygin Hamiltonization”, Theor. Appl. Mech., 46:1 (2019), 97–108 | DOI

[28] Jovanović, B., “Hamiltonization and Integrability of the Chaplygin Sphere in $\mathbb{R}^n$”, J. Nonlinear. Sci., 20:5 (2010), 569–593 | DOI | MR | Zbl

[29] Jovanović, B., “The Jacobi – Rosochatius Problem on an Ellipsoid: The Lax Representations and Billiards”, Arch. Ration. Mech. Anal., 210:1 (2013), 101–131 | DOI | MR | Zbl

[30] Jovanović, B., “Invariant Measures of Modified LR and L+R Systems”, Regul. Chaotic Dyn., 20:5 (2015), 542–552 | DOI | MR | Zbl

[31] Jovanović, B., “Noether Symmetries and Integrability in Hamiltonian Time-Dependent Mechanics”, Theor. Appl. Mech., 43:2 (2016), 255–273 | DOI

[32] Jovanović, B., “Symmetries of Line Bundles and Noether Theorem for Time-Dependent Nonholonomic Systems”, J. Geom. Mech., 10:2 (2018), 173–187 | DOI | MR | Zbl

[33] Jovanović, B., “Rolling Balls over Spheres in $\mathbb R^n$”, Nonlinearity, 31:9 (2018), 4006–4031 | DOI | MR

[34] Koiller, J., “Reduction of Some Classical Nonholonomic Systems with Symmetry”, Arch. Rational Mech. Anal., 118:2 (1992), 113–148 | DOI | MR | Zbl

[35] Moser, J., “Various Aspects of Integrable Hamiltonian Systems”, Dynamical Systems (C.I.M.E. Summer School, Bressanone, 1978), Progr. Math., 8, Birkhäuser, Boston, Mass., 1980, 233–289 | MR

[36] Prikl. Mat. Mekh., 53:1 (1989), 16–23 (Russian) | DOI | MR | Zbl

[37] Tsiganov, A. V., “Integrable Euler Top and Nonholonomic Chaplygin Ball”, J. Geom. Mech., 3:3 (2011), 337–362 | DOI | MR | Zbl

[38] Tsiganov, A. V., “Integrable Discretization and Deformation of the Nonholonomic Chaplygin Ball”, Regul. Chaotic Dyn., 22:4 (2017), 353–367 | DOI | MR | Zbl

[39] Funktsional. Anal. i Prilozhen., 20:4 (1986), 65–66 (Russian) | MR | Zbl

[40] Mat. Zametki, 44:5 (1988), 604–619 (Russian) | DOI | MR | Zbl