Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 457-475
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the nonholonomic problem of rolling without
slipping and twisting of a balanced ball over a fixed sphere in $\mathbb{R}^n$.
By relating the system to a modified LR system, we prove that the problem always has an invariant measure. Moreover,
this is a $SO(n)$-Chaplygin system that reduces to the cotangent bundle $T^*S^{n-1}$.
We present two integrable cases. The first one is obtained for a special inertia operator that allows the Chaplygin Hamiltonization of the reduced system.
In the second case, we consider the rigid body inertia operator
$\mathbb I\omega=I\omega+\omega I$, ${I=diag(I_1,\ldots,I_n)}$ with a symmetry $I_1=I_2=\ldots=I_{r} \ne I_{r+1}=I_{r+2}=\ldots=I_n$. It is shown that general trajectories
are quasi-periodic, while for $r\ne 1$, $n-1$ the Chaplygin reducing multiplier method does not apply.
Keywords:
nonholonomic Chaplygin systems, invariant measure, integrability.
@article{ND_2019_15_4_a5,
author = {B. Gaji\'c and B. Jovanovi\'c},
title = {Two {Integrable} {Cases} of a {Ball} {Rolling} over a {Sphere} in $\mathbb{R}^n$},
journal = {Russian journal of nonlinear dynamics},
pages = {457--475},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a5/}
}
TY - JOUR
AU - B. Gajić
AU - B. Jovanović
TI - Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$
JO - Russian journal of nonlinear dynamics
PY - 2019
SP - 457
EP - 475
VL - 15
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a5/
LA - en
ID - ND_2019_15_4_a5
ER -
B. Gajić; B. Jovanović. Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 457-475. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a5/